Variational Inference for Infinite Mixtures of Gaussian Processes With Applications to Traffic Flow Prediction

This paper proposes a new variational approximation for infinite mixtures of Gaussian processes. As an extension of the single Gaussian process regression model, mixtures of Gaussian processes can characterize varying covariances or multimodal data and reduce the deficiency of the computationally cubic complexity of the single Gaussian process model. The infinite mixture of Gaussian processes further integrates a Dirichlet process prior to allowing the number of mixture components to automatically be determined from data. We use variational inference and a truncated stick-breaking representation of the Dirichlet process to approximate the posterior of hidden variables involved in the model. To fix the hyperparameters of the model, the variational EM algorithm and a greedy algorithm are employed. In addition to presenting the variational infinite-mixture model, we apply it to the problem of traffic flow prediction. Experiments with comparisons to other approaches show the effectiveness of the proposed model.

[1]  Chao Yuan,et al.  Variational Mixture of Gaussian Process Experts , 2008, NIPS.

[2]  Volker Tresp,et al.  Mixtures of Gaussian Processes , 2000, NIPS.

[3]  Simon Osindero,et al.  An Alternative Infinite Mixture Of Gaussian Process Experts , 2005, NIPS.

[4]  Markos Papageorgiou,et al.  A Simplified Estimation Scheme for the Number of Vehicles in Signalized Links , 2010, IEEE Transactions on Intelligent Transportation Systems.

[5]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[6]  Shiliang Sun,et al.  A bayesian network approach to traffic flow forecasting , 2006, IEEE Transactions on Intelligent Transportation Systems.

[7]  Fei-Yue Wang,et al.  Parallel Control and Management for Intelligent Transportation Systems: Concepts, Architectures, and Applications , 2010, IEEE Transactions on Intelligent Transportation Systems.

[8]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[9]  Carl E. Rasmussen,et al.  The Infinite Gaussian Mixture Model , 1999, NIPS.

[10]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Carl E. Rasmussen,et al.  Infinite Mixtures of Gaussian Process Experts , 2001, NIPS.

[13]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[14]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[15]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[16]  Geoffrey E. Hinton,et al.  An Alternative Model for Mixtures of Experts , 1994, NIPS.

[17]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[18]  Emin Orhan Dirichlet Processes , 2012 .

[19]  Changshui Zhang,et al.  Short-term traffic flow forecasting based on Markov chain model , 2003, IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No.03TH8683).

[20]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[21]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[22]  Alexander J. Smola,et al.  Sparse Greedy Gaussian Process Regression , 2000, NIPS.

[23]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[24]  Fei-Yue Wang,et al.  Building an intellectual highway for ITS research and development , 2010 .

[25]  Christopher M. Bishop,et al.  Bayesian Hierarchical Mixtures of Experts , 2002, UAI.

[26]  Shiliang Sun,et al.  The Selective Random Subspace Predictor for Traffic Flow Forecasting , 2007, IEEE Transactions on Intelligent Transportation Systems.

[27]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[28]  T. Minka A comparison of numerical optimizers for logistic regression , 2004 .

[29]  Tom Thomas,et al.  Predictions of Urban Volumes in Single Time Series , 2010, IEEE Transactions on Intelligent Transportation Systems.

[30]  David G. Stork,et al.  Pattern Classification , 1973 .

[31]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.