Two-dimensional almost-Riemannian structures with tangency points
暂无分享,去创建一个
Andrei A. Agrachev | Mario Sigalotti | Ugo V. Boscain | Gregoire Charlot | Roberta Ghezzi | U. Boscain | A. Agrachev | M. Sigalotti | G. Charlot | R. Ghezzi
[1] A. Bellaïche. The tangent space in sub-riemannian geometry , 1994 .
[2] U. Boscain,et al. High-order angles in almost-Riemannian geometry , 2007 .
[3] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[4] U. Boscain,et al. NONISOTROPIC 3-LEVEL QUANTUM SYSTEMS: COMPLETE SOLUTIONS FOR MINIMUM TIME AND MINIMUM ENERGY , 2004, quant-ph/0409022.
[5] Bernard Malgrange,et al. Ideals of differentiable functions , 1966 .
[6] V. Jurdjevic. Geometric control theory , 1996 .
[7] J. Gauthier,et al. Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .
[8] B. Piccoli,et al. A short introduction to optimal control , 2005 .
[9] Fernand Pelletier,et al. THE PROBLEM OF GEODESICS, INTRINSIC DERIVATION AND THE USE OF CONTROL THEORY IN SINGULAR SUB-RIEMANNIAN GEOMETRY , 1996 .
[10] Andrei A. Agrachev. A Gauss-Bonnet formula for contact sub-Riemannian manifolds , 2001 .
[11] U. Boscain,et al. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds , 2006, math/0609566.
[12] Jean-Baptiste Caillau,et al. Conjugate and cut loci of a two-sphere of revolution with application to optimal control , 2009 .
[13] F. Pelletier. Quelques propriétés géométriques des variétés pseudo-riemanniennes singulières , 1995 .
[14] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[15] F. Pelletier,et al. Sur le théorème de Gauss-Bonnet pour les pseudo-métriques singulières , 1987 .