Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation.

During embryogenesis, neural progenitors in the ganglionic eminences give rise to diverse GABAergic interneuron subtypes that populate all forebrain regions. The extent to which these cells are genetically predefined or determined by postmigratory environmental cues remains unknown. To address this question, we performed homo- and heterotopic transplantation of early postnatal MGE-derived cortical and hippocampal interneurons. Grafted cells migrated, and displayed neurochemical, electrophysiological, morphological, and neurochemical profiles similar to endogenous interneurons. Our results indicate that the host environment regulates the proportion of interneuron classes in the brain region. However, some specific interneuron subtypes retain characteristics representative of their donor brain regions.

[1]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[2]  Rachel C. Bandler,et al.  Cortical interneuron specification: the juncture of genes, time and geometry , 2017, Current Opinion in Neurobiology.

[3]  J. Rossier,et al.  Characterization of Type I and Type II nNOS-Expressing Interneurons in the Barrel Cortex of Mouse , 2012, Front. Neural Circuits.

[4]  S. Anderson,et al.  Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors , 2008, Neuron.

[5]  A. Fairén,et al.  Neurogenesis of glutamic acid decarboxylase immunoreactive cells in the hippocampus of the mouse. I: Regio superior and regio inferior , 1989, The Journal of comparative neurology.

[6]  T. Kosaka,et al.  Patterns of colocalization of neuronal nitric oxide synthase and somatostatin-like immunoreactivity in the mouse hippocampus: quantitative analysis with optical disector , 2004, Neuroscience.

[7]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[8]  S. Anderson,et al.  A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. , 2008, Developmental biology.

[9]  Gord Fishell,et al.  Genetic and activity-dependent mechanisms underlying interneuron diversity , 2017, Nature Reviews Neuroscience.

[10]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[11]  J. Rubenstein,et al.  Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice , 2009, Proceedings of the National Academy of Sciences.

[12]  V. Bolshakov,et al.  hPSC-derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. , 2014, Cell stem cell.

[13]  S. Anderson,et al.  The chandelier cell, form and function , 2014, Current Opinion in Neurobiology.

[14]  M. Stryker,et al.  Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. , 2016, Cell reports.

[15]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[16]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[17]  Ethan M. Goldberg,et al.  Rapid developmental maturation of neocortical FS cell intrinsic excitability. , 2011, Cerebral cortex.

[18]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[19]  Robert Krencik,et al.  Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits , 2013, Nature Biotechnology.

[20]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[21]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[22]  N. Kessaris,et al.  Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex , 2012, Front. Neural Circuits.

[23]  A. Kriegstein,et al.  Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. , 2010, Cell stem cell.

[24]  S. Anderson,et al.  GABAergic interneuron transplants to study development and treat disease , 2014, Trends in Neurosciences.

[25]  M. Ross,et al.  Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition , 2014, Proceedings of the National Academy of Sciences.

[26]  J. Rubenstein,et al.  GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior , 2013, Nature Neuroscience.

[27]  Jason Tucciarone,et al.  Strategies and Tools for Combinatorial Targeting of GABAergic Neurons in Mouse Cerebral Cortex , 2016, Neuron.

[28]  Y. Ben-Ari,et al.  Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus , 2002, The European journal of neuroscience.

[29]  G. Fishell,et al.  The origin of neocortical nitric oxide synthase-expressing inhibitory neurons , 2012, Front. Neural Circuits.

[30]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[31]  N. Tamamaki,et al.  Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function , 2010, Front. Neurosci..

[32]  A. Visel,et al.  Dlx1&2-Dependent Expression of Zfhx1b (Sip1, Zeb2) Regulates the Fate Switch between Cortical and Striatal Interneurons , 2013, Neuron.

[33]  R. Romcy-Pereira,et al.  Interplay of environmental signals and progenitor diversity on fate specification of cortical GABAergic neurons , 2015, Front. Cell. Neurosci..

[34]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[35]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[36]  R. Froemke,et al.  Intrinsically determined cell death of developing cortical interneurons , 2012, Nature.

[37]  S. Baraban,et al.  Synaptic integration of transplanted interneuron progenitor cells into native cortical networks. , 2016, Journal of neurophysiology.

[38]  A. Kriegstein,et al.  Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. , 1999, Journal of neurophysiology.

[39]  Gord Fishell,et al.  Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate. , 2015, Cell reports.

[40]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[41]  S. Anderson,et al.  Interneuron Progenitors Attenuate the Power of Acute Focal Ictal Discharges , 2011, Neurotherapeutics.

[42]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[43]  A. Kriegstein,et al.  Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury. , 2016, Cell stem cell.

[44]  E. Callaway,et al.  Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin , 2006, The Journal of comparative neurology.

[45]  M. Calcagnotto,et al.  Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain , 2006, The Journal of Neuroscience.