Wuppertal Real and Complex Taylor Arithmetic in C-XSC

In C-XSC the Taylor Arithmetic is implemented for real as well as for complex variables. For a given function f : R → R or f : R2 → R composed of the elementary C-XSC functions together with the arithmetic operators, the Taylor coefficients or the (partial) derivatives up to a given order p can be computed using the IEEE format or in higher precision using the interval staggered format. Additionally the Taylor Arithmetic is implemented in the IEEE Format for one complex variable. Each of the described Taylor Arithmetics has a C++ class of its own, and their elements and member functions are detailed together with simple sample programs. With these tools the user has an easy access for solving appropriate numerical problems.

[1]  L. B. Rall,et al.  Optimal Implementation of Differentiation Arithmetic. , 1986 .

[2]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[3]  Walter Krämer,et al.  Automatic Forward Error Analysis for Floating Point Algorithms , 2001, Reliab. Comput..

[4]  George F. Corliss,et al.  Applications of differentiation arithmetic , 1988 .

[5]  Louis B. Rall,et al.  An introduction to automatic differentiation , 1996 .

[6]  Willard L. Miranker,et al.  A new approach to scientific computation , 1983 .

[7]  Ramon E. Moore Reliability in computing: the role of interval methods in scientific computing , 1988 .

[8]  Ulrich W. Kulisch,et al.  Computerarithmetic : scientific computation and programming languages , 1987 .

[9]  W. Krämer,et al.  Inverse standard functions for real and complex point and interval arguments with dynamic accuracy , 1988 .

[10]  M. Jerrell Automatic Differentiation and Interval Arithmetic for Estimation of Disequilibrium Models , 1997 .

[11]  Hans-Christoph Fischer Schnelle automatische Differentiation, Einschliessungsmethoden und Anwendungen , 1990 .

[12]  L. B. Rall,et al.  Differentiation Arithmetics , 1990, Computer Arithmetic and Self-Validating Numerical Methods.

[13]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[14]  Willard L. Miranker,et al.  Computer arithmetic in theory and practice , 1981, Computer science and applied mathematics.

[15]  U. Kulisch,et al.  Scientific Computing with Automatic Result Verification. , 1994 .

[16]  K. Braune Standard functions for real and complex point and interval arguments with dynamic accuracy , 1988 .

[17]  Walter Krämer,et al.  A Computer Oriented Approach to Get Sharp Reliable Error Bounds , 1997, Reliab. Comput..

[18]  A. Griewank,et al.  Automatic differentiation of algorithms : theory, implementation, and application , 1994 .

[19]  Griewank,et al.  On automatic differentiation , 1988 .

[20]  M. Iri Simultaneous computation of functions, partial derivatives and estimates of rounding errors —Complexity and practicality— , 1984 .

[21]  R. D. Grigorieff,et al.  Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis) , 1980, Computing Supplementum.

[22]  Walter Krämer,et al.  A Priori Worst Case Error Bounds for Floating-Point Computations , 1997, IEEE Trans. Computers.

[23]  M. Arcak,et al.  Interval Analysis , 2021, SpringerBriefs in Electrical and Computer Engineering.

[24]  Louis B. Rall,et al.  Automatic Differentiation: Techniques and Applications , 1981, Lecture Notes in Computer Science.

[25]  L. B. Rall,et al.  Differentiation in PASCAL-SC: type GRADIENT , 1984, TOMS.

[26]  Christian P. Ullrich,et al.  Computer Arithmetic and Self-Validating Numerical Methods , 1990, Notes and reports in mathematics in science and engineering.

[27]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .