Sintering, Phase Stability, and Properties of Calcium Phosphate-Mullite Composites

In this contribution, we report the results of a study to probe into the combined effect of the sintering conditions and mullite (3Al2O3·2SiO2) addition (upto 30 wt%), on the densification mechanism, phase assemblage, and microstructure development in calcium phosphate (CaP)-mullite composites. The experimental results reveal that close to 95% theoretical density can be achieved by sintering the compositions in the temperature range of 1300°–1350°C. Finer scale microstructural analysis using transmission electron microscopy reveals the presence of both β- and α-TCP (Ca3(PO4)2–tricalcium phosphate) and a crystalline residue of gehlenite at triple junctions. The shrinkage kinetics of the composites have been analyzed to qualitatively understand the sintering mechanisms. For the composites, solid-state sintering in the initial stage, followed by liquid-phase sintering at or near the sintering temperature are postulated to explain the effect of temperature and volume fraction of the second phase. Some important features of the liquid-phase sintering have been discussed using the CaO–Al2O3–SiO2 ternary phase diagram. A comparison with the earlier published results reveals that a better combination of long-crack fracture toughness, compressive strength, and flexural strength can be obtained with the newly developed composites.

[1]  B. Basu,et al.  Phase stability and microstructure development in hydroxyapatite–mullite system , 2008 .

[2]  Jiecai Han,et al.  Fabrication and mechanical properties of ZrB2–SiCw ceramic matrix composite , 2008 .

[3]  Tao Zhang,et al.  Microstructure and mechanical properties of hydroxyapatite obtained by gel-casting process , 2008 .

[4]  B. Basu,et al.  Designing Materials for Hard Tissue Replacement , 2008 .

[5]  R. V. Prasad,et al.  Synthesis and sintered properties evaluation of calcium phosphate ceramics , 2007 .

[6]  Young Keun Shin,et al.  Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications , 2007 .

[7]  M. Shaw,et al.  Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite , 2004 .

[8]  J. Ong,et al.  Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. , 2004, Biomaterials.

[9]  F. Boey,et al.  Anisotropic grain growth of mullite in high-energy ball milled powders doped with transition metal oxides , 2003 .

[10]  J. Ong,et al.  Influence of Post-deposition Heating Time and the Presence of Water Vapor on Sputter-coated Calcium Phosphate Crystallinity , 2003, Journal of dental research.

[11]  M. Harmer,et al.  Effect of Rigid Inclusions on the Densification and Constitutive Parameters of Liquid-Phase-Sintered YBa2Cu3O6+x Powder Compacts , 2003 .

[12]  Hyoun‐Ee Kim,et al.  Effect of calcinations of starting powder on mechanical properties of hydroxyapatite–alumina bioceramic composite , 2002, Journal of materials science. Materials in medicine.

[13]  I. Asahina,et al.  Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. , 2001, Biomaterials.

[14]  P. Odier,et al.  Influence of the network on conductivity in ternary CaO–Al2O3–SiO2 glasses and melts , 2001 .

[15]  Seong‐Hyeon Hong,et al.  Development of Textured Mullite by Templated Grain Growth , 1999 .

[16]  A. Carr,et al.  A synthetic bone implant macroscopically identical to cancellous bone. , 1998, Biomaterials.

[17]  M. Kakihana,et al.  Hydroxyapatite/Hydroxyapatite‐Whisker Composites without Sintering Additives: Mechanical Properties and Microstructural Evolution , 1997 .

[18]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[19]  M. Trunec,et al.  Injection moulded hydroxyapatite ceramics. , 1996, Biomaterials.

[20]  F. Lange,et al.  The Effect of Inclusions on Densification; III, The Desintering Phenomenon , 1992 .

[21]  A. Evans,et al.  Effect of Inclusions on Densification: II, Numerical Model , 1992 .

[22]  R. Raj,et al.  Sintering of TiO2–Al2O3 Composites: A Model Experimental Investigation , 1988 .

[23]  G. H. Nancollas,et al.  A calcium hydroxyapatite precipitated from an aqueous solution: An international multimethod analysis , 1987 .

[24]  N. Claussen,et al.  Microstructure of Sintered Mullite-Zirconia Composites , 1983 .

[25]  H. Aoki,et al.  Dense polycrystalline β-tricalcium phosphate for prosthetic applications , 1982 .

[26]  P. Pierre Constitution of Bone China: I, High‐Temperature Phase Equilibrium Studies in the System Tricalcium Phosphate—Alumina—Silica , 1954 .

[27]  A. Volceanov,et al.  Hydroxiapatite - zirconia composites for biomedical applications , 2006 .

[28]  N. Bansal,et al.  Mechanical behavior of zirconia/alumina composites , 2005 .

[29]  M. J. Stott,et al.  2003 ! aand b-tricalcium phosphate : A density functional study , 2003 .

[30]  F. Oktar,et al.  Processing and characterization of bioglass reinforced hydroxyapatite composites , 2003 .

[31]  M. Rahaman,et al.  Anisotropic Grain Growth and Microstructural Evolution of Dense Mullite above 1550°C , 2000 .

[32]  D. Bernache-Assollant,et al.  Processing, microstructure and toughness of Al2O3 platelet-reinforced hydroxyapatite , 1997 .

[33]  L. Hermansson,et al.  Hydroxyapatite-alumina composites and bone-bonding. , 1995, Biomaterials.

[34]  A. Jagota,et al.  Sintering of Glass Powder Packings with Metal Inclusions , 1991 .

[35]  T. Doi,et al.  Synthesis and Sintering of TiSe2 , 1987 .

[36]  Hideki Aoki,et al.  Mechanical properties of sintered hydroxyapatite for prosthetic applications , 1981 .

[37]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .