Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy

Abstract Photodynamic therapy (PDT) is a treatment modality that uses a specific photosensitizing agent, molecular oxygen, and light of a particular wavelength to kill cells targeted by the therapy. Topically administered aminolevulinic acid (ALA) is widely used to effectively treat cancerous and precancerous skin lesions, resulting in targeted tissue damage and little to no scarring. The targeting aspect of the treatment arises from the fact that ALA is preferentially converted into protoporphyrin IX (PpIX) in neoplastic cells. To monitor the amount of PpIX in tissues, techniques have been developed to measure PpIX-specific fluorescence, which provides information useful for monitoring the abundance and location of the photosensitizer before and during the illumination phase of PDT. This review summarizes the current state of these fluorescence detection techniques. Non-invasive devices are available for point measurements, or for wide-field optical imaging, to enable monitoring of PpIX in superficial tissues. To gain access to information at greater tissue depths, multi-modal techniques are being developed which combine fluorescent measurements with ultrasound or optical coherence tomography, or with microscopic techniques such as confocal or multiphoton approaches. The tools available at present, and newer devices under development, offer the promise of better enabling clinicians to inform and guide PDT treatment planning, thereby optimizing therapeutic outcomes for patients. Zusammenfassung Die photodynamische Therapie (PDT) ist eine Behandlungsmethode, die einen bestimmten Photosensibilisator, molekularen Sauerstoff und Licht einer bestimmten Wellenlänge nutzt, um Zellen gezielt zu zerstören. Der Einsatz topisch verabreichter Aminolävulinsäure (ALA) ist weit verbreitet, um präkanzeröse und kanzeröse Hautveränderungen effektiv zu behandeln, indem gezielt Gewebeschäden erzeugt werden – ohne bzw. mit minimaler Narbenbildung. Der zielgerichtete Effekt der Behandlung ergibt sich aus der Tatsache, dass ALA in neoplastischen Zellen vorzugsweise in Protoporphyrin IX (PpIX) umgewandelt wird. Um die Menge an PpIX im Gewebe zu überwachen, wurden Techniken entwickelt, die es erlauben, die PpIX-spezifische Fluoreszenz, welche nützliche Informationen über die Menge und Lage des Photosensibilisators vor und während der Beleuchtungsphase der PDT liefert, zu messen. Der vorliegende Übersichtsartikel fasst den aktuellen Stand dieser Fluoreszenzdetektionstechniken zusammen. Für die PpIX-Überwachung in oberflächlichen Gewebebereichen stehen bereits non-invasive Geräte für Punkt-Messungen oder für die optische Weitwinkel-Bildgebung zur Verfügung. Um den Zugriff auf Informationen aus größeren Tiefen des Gewebes zu erhalten, wurden multimodale Techniken entwickelt, die die Fluoreszenzmessungen mit Ultraschall, optischer Kohärenztomographie oder mit mikroskopischen Techniken (konfokale Laser-Scanning Mikroskopie, Mehrphotonenmikroskopie) kombinieren. Zusammenfassend kann man sagen, dass die derzeit verfügbaren Tools und die neueren Geräte in der Entwicklung eine bessere Information der Kliniker und somit eine verbesserte PDT-Therapieplanung resultierend in einer Optimierung der Behandlungsergebnisse für die Patienten versprechen.

[1]  Abraham Katzir,et al.  Lasers and optical fibers in medicine , 1993 .

[2]  B. Pogue,et al.  PHOTODYNAMIC THERAPY OF CANCER , 2022 .

[3]  Qian Peng,et al.  Fluorescence detection of protoporphyrin IX in living cells: a comparative study on single- and two-photon excitation. , 2008, Journal of biomedical optics.

[4]  Wiley Interscience,et al.  Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy , 2008, Lasers in surgery and medicine.

[5]  Edward V Maytin,et al.  Noninvasive fluorescence monitoring of protoporphyrin IX production and clinical outcomes in actinic keratoses following short-contact application of 5-aminolevulinate. , 2010, Journal of biomedical optics.

[6]  Scott C Davis,et al.  White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX , 2013, Journal of biomedical optics.

[7]  G. Jemec,et al.  In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20‐MHz ultrasound , 2009, The British journal of dermatology.

[8]  L. Goldman The Biomedical Laser , 1981 .

[9]  T. Desai,et al.  The Use of High‐Frequency Ultrasound in the Evaluation of Superficial and Nodular Basal Cell Carcinomas , 2007, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[10]  D. Cramb,et al.  Near‐Infrared Two‐Photon Excitation of Protoporphyrin IX: Photodynamics and Photoproduct Generation ¶ , 2000, Photochemistry and photobiology.

[11]  Anthony J. Durkin,et al.  Relation between fluorescence spectra of dilute and turbid samples. , 1994, Applied optics.

[12]  Chen-Yuan Dong,et al.  Multiphoton microscopy: a new paradigm in dermatological imaging. , 2007, European journal of dermatology : EJD.

[13]  R. Anderson,et al.  Iontophoretic delivery of ALA provides a quantitative model for ALA pharmacokinetics and PpIX phototoxicity in human skin. , 1997, The Journal of investigative dermatology.

[14]  B. Henderson,et al.  Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation. , 1986, Radiation research.

[15]  Konstantinos N. Halkiotis,et al.  In vitro evaluation of the genotoxic and clastogenic potential of photodynamic therapy. , 1999, Mutagenesis.

[16]  Harry Moseley,et al.  Modelling fluorescence in clinical photodynamic therapy , 2012, Photochemical & Photobiological Sciences.

[17]  V. Wallace,et al.  Photodynamic Therapy of Human Glioma Spheroids Using 5-Aminolevulinic Acid¶ , 2000, Photochemistry and photobiology.

[18]  S. Campbell,et al.  Monitoring the accumulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photodynamic therapy utilizing non-invasive fluorescence imaging and quantification. , 2011, Photodiagnosis and photodynamic therapy.

[19]  A. Curnow,et al.  Direct Comparison of δ‐Aminolevulinic Acid and Methyl‐Aminolevulinate‐Derived Protoporphyrin IX Accumulations Potentiated by Desferrioxamine or the Novel Hydroxypyridinone Iron Chelator CP94 in Cultured Human Cells , 2007 .

[20]  Stefan Andersson-Engels,et al.  Multi-colour fluorescence imaging in connection with photodynamic therapy of delta-amino levulinic acid (ALA) sensitised skin malignancies , 1995 .

[21]  J. Moan,et al.  Influence of formulation factors on methyl-ALA-induced protoporphyrin IX accumulation in vivo. , 2006, Photodiagnosis and photodynamic therapy.

[22]  H. S. de Bruijn,et al.  Microscopic distribution of protoporphyrin (PpIX) fluorescence in superficial basal cell carcinoma during light-fractionated aminolaevulinic acid photodynamic therapy. , 2008, Acta dermato-venereologica.

[23]  M. Rajadhyaksha,et al.  Use of Ex Vivo Confocal Scanning Laser Microscopy during Mohs Surgery for Nonmelanoma Skin Cancers , 2004, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.].

[24]  Michael S Patterson,et al.  Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo¶ , 2002, Photochemistry and photobiology.

[25]  J. Paoli,et al.  Anti-Stokes fluorescence from endogenously formed protoporphyrin IX – Implications for clinical multiphoton diagnostics , 2012, Journal of biophotonics.

[26]  Veit Rohde,et al.  Multiphoton excitation fluorescence microscopy of 5‐aminolevulinic acid induced fluorescence in experimental gliomas , 2008, Lasers in surgery and medicine.

[27]  D. Salomon,et al.  Comparison of ALA- and ALA hexyl-ester-induced PpIX depth distribution in human skin carcinoma. , 2008, Journal of photochemistry and photobiology. B, Biology.

[28]  S. Campbell,et al.  Effect of MAL-photodynamic therapy on hypertrophic scarring. , 2010, Photodiagnosis and photodynamic therapy.

[29]  Frank Verhaegen,et al.  Spectroscopic characterization of a novel electronic brachytherapy system , 2008, Physics in medicine and biology.

[30]  Peter Bjerring,et al.  Fluorescence detection and diagnosis of non‐melanoma skin cancer at an early stage , 2009, Lasers in surgery and medicine.

[31]  J C Kennedy,et al.  Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. , 1992, Journal of photochemistry and photobiology. B, Biology.

[32]  C. Mosse,et al.  A randomised controlled trial of ALA vs. Photofrin photodynamic therapy for high-grade dysplasia arising in Barrett’s oesophagus , 2013, Lasers in Medical Science.

[33]  M S Patterson,et al.  In vivo TESTS OF THE CONCEPT OF PHOTODYNAMIC THRESHOLD DOSE IN NORMAL RAT LIVER PHOTOSENSITIZED BY ALUMINUM CHLOROSULPHONATED PHTHALOCYANINE , 1990, Photochemistry and photobiology.

[34]  Thomas J. Dougherty,et al.  Basic principles of photodynamic therapy , 2001 .

[35]  V. del Marmol,et al.  Imaging of basal cell carcinoma by high‐definition optical coherence tomography: histomorphological correlation. A pilot study , 2012, The British journal of dermatology.

[36]  R. Pottier,et al.  An Affordable, Portable Fluorescence Imaging Device for Skin Lesion Detection Using a Dual Wavelength Approach for Image Contrast Enhancement and Aminolaevulinic Acid-induced Protoporphyrin IX. Part I. Design, Spectral and Spatial Characteristics , 2001, Lasers in Medical Science.

[37]  M. Padgett,et al.  Fluorescence induced by aminolevulinic acid and methyl aminolevulinate on normal skin. , 2007, Photodiagnosis and photodynamic therapy.

[38]  Foote Cs Mechanisms of photooxygenation. , 1984 .

[39]  Michael S. Feld,et al.  Portable Optical Fiber Probe-Based Spectroscopic Scanner for Rapid Cancer Diagnosis: A New Tool for Intraoperative Margin Assessment , 2012, PloS one.

[40]  H. Wulf,et al.  Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial , 2012, The British journal of dermatology.

[41]  B. Wilson,et al.  The physics, biophysics and technology of photodynamic therapy , 2008, Physics in medicine and biology.

[42]  R. Rava,et al.  Analytical model for extracting intrinsic fluorescence in turbid media. , 1993, Applied optics.

[43]  J Moan,et al.  Pharmacokinetic studies on 5-aminolevulinic acid-induced protoporphyrin IX accumulation in tumours and normal tissues. , 1997, Cancer letters.

[44]  Ulas Sunar,et al.  Quantification of PpIX concentration in basal cell carcinoma and squamous cell carcinoma models using spatial frequency domain imaging , 2013, Biomedical optics express.

[45]  Tayyaba Hasan,et al.  Pulsed diode laser-based singlet oxygen monitor for photodynamic therapy: in vivo studies of tumor-laden rats. , 2008, Journal of biomedical optics.

[46]  R. Bradley,et al.  A review of attenuation correction techniques for tissue fluorescence , 2006, Journal of The Royal Society Interface.

[47]  Hamid Dehghani,et al.  Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX. , 2008, Optics express.

[48]  A E Profio,et al.  Laser fluorescence bronchoscope for localization of occult lung tumors. , 1979, Medical physics.

[49]  A. Curnow,et al.  Direct comparison of delta-aminolevulinic acid and methyl-aminolevulinate-derived protoporphyrin IX accumulations potentiated by desferrioxamine or the novel hydroxypyridinone iron chelator CP94 in cultured human cells. , 2007, Photochemistry and photobiology.

[50]  K D Paulsen,et al.  A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery. , 2012, Optics letters.

[51]  H. S. de Bruijn,et al.  Microscopic localisation of protoporphyrin IX in normal mouse skin after topical application of 5-aminolevulinic acid or methyl 5-aminolevulinate. , 2008, Journal of photochemistry and photobiology. B, Biology.

[52]  Sanjay Anand,et al.  Biomodulatory approaches to photodynamic therapy for solid tumors. , 2012, Cancer letters.

[53]  V. Krishnaswamy,et al.  System development for high frequency ultrasound-guided fluorescence quantification of skin layers. , 2010, Journal of biomedical optics.

[54]  K. Svanberg,et al.  Laser‐induced fluorescence studies of normal and malignant tumour tissue of rat following intravenous injection of δ‐amino levulinic acid , 1997, Lasers in surgery and medicine.

[55]  G. Imokawa,et al.  Astaxanthin attenuates the UVB‐induced secretion of prostaglandin E2 and interleukin‐8 in human keratinocytes by interrupting MSK1 phosphorylation in a ROS depletion–independent manner , 2012, Experimental dermatology.

[56]  Charles A. DiMarzio,et al.  Structured illumination microscopy using random intensity incoherent reflectance , 2013, Journal of biomedical optics.

[57]  Anthony J. Durkin,et al.  Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain. , 2011, Journal of biomedical optics.

[58]  Heike Richter,et al.  Application of optical non‐invasive methods in skin physiology: a comparison of laser scanning microscopy and optical coherent tomography with histological analysis , 2007, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[59]  F. Pinto,et al.  Current uses of diagnostic high-frequency US in dermatology. , 1998, European journal of radiology.

[60]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[61]  Iris Riemann,et al.  High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. , 2003, Journal of biomedical optics.

[62]  J. Mourant,et al.  Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy. , 1997, Physics in medicine and biology.

[63]  W Sibbett,et al.  The Application of a Compact Multispectral Imaging System with Integrated Excitation Source to In vivo Monitoring of Fluorescence During Topical Photodynamic Therapy of Superficial Skin Cancers ¶ , 2001, Photochemistry and photobiology.

[64]  J. Krasiński,et al.  The two-photon laser-induced fluorescence of the tumor-localizing photosensitizer hematoporphyrin derivative. Resonance-enhanced 750 nm two-photon excitation into the near-UV Soret band. , 1986, The Journal of biological chemistry.

[65]  A. Neuberger,et al.  The metabolism of delta -aminolaevulic acid. 1. Normal pathways, studied with the aid of 15N. , 1956, The Biochemical journal.

[66]  J. Lakowicz,et al.  Fluorescence detection of the anticancer drug topotecan in plasma and whole blood by two-photon excitation. , 1996, Analytical biochemistry.

[67]  A. MacRobert,et al.  Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy. , 2009, Journal of photochemistry and photobiology. B, Biology.

[68]  Aongus McCarthy,et al.  Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector , 2013, CLEO: 2013.

[69]  K J Brodbeck,et al.  A system for real time fluorescence imaging in color for tumor diagnosis. , 1987, Medical physics.

[70]  Qian Peng,et al.  Milestones in the development of photodynamic therapy and fluorescence diagnosis , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[71]  C. Foote Mechanisms of photooxygenation. , 1984, Progress in clinical and biological research.

[72]  F. Amzica,et al.  Ultrasonographic staging of cutaneous malignant tumors: an ultrasonographic depth index , 2013, Archives of Dermatological Research.

[73]  V. de Giorgi,et al.  Nonlinear laser imaging of skin lesions , 2008, Journal of biophotonics.

[74]  K. T. Moesta,et al.  Silencing of human ferrochelatase causes abundant protoporphyrin‐IX accumulation in colon cancer , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[75]  Miles Padgett,et al.  In vivo measurement of 5‐aminolaevulinic acid‐induced protoporphyrin IX photobleaching: a comparison of red and blue light of various intensities , 2004, Photodermatology, photoimmunology & photomedicine.

[76]  R. Heintzmann,et al.  High-resolution imaging of autofluorescent particles within drusen using structured illumination microscopy , 2013, British Journal of Ophthalmology.

[77]  Michael S Patterson,et al.  Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Current Status, Challenges and Future Prospects , 2006, Photochemistry and photobiology.

[78]  J. M. Marchetti,et al.  A vehicle for photodynamic therapy of skin cancer: influence of dimethylsulphoxide on 5-aminolevulinic acid in vitro cutaneous permeation and in vivo protoporphyrin IX accumulation determined by confocal microscopy. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[79]  E. Tschen,et al.  Photodynamic therapy using aminolaevulinic acid for patients with nonhyperkeratotic actinic keratoses of the face and scalp: phase IV multicentre clinical trial with 12‐month follow up , 2006, The British journal of dermatology.

[80]  Alison Curnow,et al.  The relationship between protoporphyrin IX photobleaching during real‐time dermatological methyl‐aminolevulinate photodynamic therapy (MAL‐PDT) and subsequent clinical outcome , 2010, Lasers in surgery and medicine.

[81]  J. Kennedy,et al.  The Monitoring of ALA-Induced Protoporphyrin IX Accumulation and Clearance in Patients with Skin Lesions by In Vivo Surface-Detected Fluorescence Spectroscopy , 1999, Lasers in Medical Science.

[82]  Henricus J C M Sterenborg,et al.  Fractionated illumination significantly improves the response of superficial basal cell carcinoma to aminolevulinic acid photodynamic therapy. , 2006, The Journal of investigative dermatology.

[83]  D. Jocham,et al.  A FLUORESCENCE IMAGING DEVICE FOR ENDOSCOPIC DETECTION OF EARLY STAGE CANCER – INSTRUMENTAL and EXPERIMENTAL STUDIES , 1987, Photochemistry and photobiology.

[84]  Narasimhan Rajaram,et al.  Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements. , 2011, Journal of biomedical optics.

[85]  Thilo Gambichler,et al.  In vivo optical coherence tomography of basal cell carcinoma. , 2007, Journal of dermatological science.

[86]  B R Masters,et al.  Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. , 1997, Biophysical journal.

[87]  Mamta Khurana,et al.  Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. , 2010, Journal of biomedical optics.

[88]  J Moan,et al.  Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5‐aminolevulinic acid in mice bearing mammary carcinoma , 1992, International journal of cancer.

[89]  Giovanni Pellacani,et al.  Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy , 2011, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[90]  C. Berking,et al.  Morphology of basal cell carcinoma in high definition optical coherence tomography: en‐face and slice imaging mode, and comparison with histology , 2013, Journal of the European Academy of Dermatology and Venereology : JEADV.

[91]  Karsten König,et al.  Multiphoton tomography of skin tumors after ALA application , 2007, SPIE BiOS.

[92]  H. C. de Vijlder,et al.  Light fractionation significantly improves the response of superficial basal cell carcinoma to aminolaevulinic acid photodynamic therapy: five-year follow-up of a randomized, prospective trial. , 2012, Acta dermato-venereologica.

[93]  B. Wilson,et al.  In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications , 1998, Photochemistry and photobiology.

[94]  Hamid Dehghani,et al.  Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth. , 2007, Applied optics.

[95]  M Rajadhyaksha,et al.  In vivo confocal microscopy in dermatology. , 2001, Dermatologic clinics.

[96]  Gianluca Valentini,et al.  Fluorescence molecular tomography of an animal model using structured light rotating view acquisition , 2013, Journal of biomedical optics.

[97]  Stefan Andersson-Engels,et al.  Photodynamic therapy of nonmelanoma skin malignancies with topical delta-amino levulinic acid: diagnostic measurements , 1994, Other Conferences.

[98]  R R Alfano,et al.  Effect of multiple light scattering and self-absorption on the fluorescence and excitation spectra of dyes in random media. , 1994, Applied optics.

[99]  Jürgen Lademann,et al.  Clinical applicability of in vivo fluorescence confocal microscopy for noninvasive diagnosis and therapeutic monitoring of nonmelanoma skin cancer. , 2008, Journal of biomedical optics.

[100]  B. Pogue,et al.  Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization. , 2007, Optics express.

[101]  Jan Siegel,et al.  Time-domain fluorescence lifetime imaging applied to biological tissue , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[102]  Johan Moan,et al.  Influence of light exposure on the kinetics of protoporphyrin IX formation in normal skin of hairless mice after application of 5-aminolevulinic acid methyl ester. , 2005, The Journal of investigative dermatology.

[103]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[104]  A. Juzeniene,et al.  Reduction of cutaneous photosensitivity by application of ointment containing ferrous or cobaltous ions concomitant with the use of topical protoporphyrin IX precursors. , 2010, Photodiagnosis and photodynamic therapy.

[105]  A. Bergmann,et al.  Multispectral fluorescence lifetime imaging by TCSPC , 2007, Microscopy research and technique.

[106]  A. Neuberger,et al.  The metabolism of delta -aminolaevulic acid. 2. Normal pathways, studied with the aid of 14C. , 1956, The Biochemical journal.

[107]  P. Bjerring,et al.  PpIX fluorescence combined with auto‐fluorescence is more accurate than PpIX fluorescence alone in fluorescence detection of non‐melanoma skin cancer: An intra‐patient direct comparison study , 2012, Lasers in surgery and medicine.

[108]  Karsten König,et al.  Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non‐invasive diagnostics , 2012, Experimental dermatology.

[109]  Mollie A MacCormack Photodynamic therapy. , 2006, Advances in dermatology.

[110]  J. Moan,et al.  Lipid cubic phases for improved topical drug delivery in photodynamic therapy. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[111]  D Piao,et al.  Design of near-infrared imaging probe with the assistance of ultrasound localization. , 2001, Applied optics.

[112]  Anthony J. Durkin,et al.  Quantitation and mapping of tissue optical properties using modulated imaging. , 2009, Journal of biomedical optics.

[113]  L. Lilge,et al.  Implicit and explicit dosimetry in photodynamic therapy: a New paradigm , 1997, Lasers in Medical Science.

[114]  K. König,et al.  Two-photon microscopes and in vivo multiphoton tomographs--powerful diagnostic tools for tissue engineering and drug delivery. , 2006, Advanced drug delivery reviews.

[115]  Georgi Graschew,et al.  Imaging of tumors by time-delayed laser-induced fluorescence , 1991, MedTech.

[116]  J Moan,et al.  Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells. , 1985, Cancer Research.

[117]  R W McClane,et al.  APPLICATION OF CHARGE‐COUPLED DEVICE TECHNOLOGY FOR MEASUREMENT OF LASER LIGHT AND FLUORESCENCE DISTRIBUTION IN TUMORS FOR PHOTODYNAMIC THERAPY , 1991, Photochemistry and photobiology.

[118]  E. Russell Obituary Notice: Percival Spencer Umfreville Pickering. , 1921, The Biochemical journal.