Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density.

[1]  Mike Heilemann,et al.  Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  E. Gouaux,et al.  X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor , 2009, Nature.

[3]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[4]  E. Gouaux,et al.  Structure and Mechanism of a Na+-Independent Amino Acid Transporter , 2009, Science.

[5]  Daniel Choquet,et al.  Endocytic Trafficking and Recycling Maintain a Pool of Mobile Surface AMPA Receptors Required for Synaptic Potentiation , 2009, Neuron.

[6]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[7]  Jan Vogelsang,et al.  Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy , 2009, Proceedings of the National Academy of Sciences.

[8]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[9]  Mike Heilemann,et al.  Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. , 2008, Journal of structural biology.

[10]  Jan Vogelsang,et al.  Superresolution microscopy on the basis of engineered dark states. , 2008, Journal of the American Chemical Society.

[11]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[12]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[13]  Christian Eggeling,et al.  Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. , 2008, Nano letters.

[14]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[15]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[16]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[17]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[18]  R. Hochstrasser,et al.  Lipid diffusion from single molecules of a labeled protein undergoing dynamic association with giant unilamellar vesicles and supported bilayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[19]  D. Choquet,et al.  [Surface mobility of postsynaptic AMPARs tunes synaptic transmission]. , 2008, Medecine sciences : M/S.

[20]  J. Sibarita,et al.  Surface Trafficking of Neurotransmitter Receptor: Comparison between Single-Molecule/Quantum Dot Strategies , 2007, The Journal of Neuroscience.

[21]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[22]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[23]  H. Vogel,et al.  Repetitive reversible labeling of proteins at polyhistidine sequences for single-molecule imaging in live cells. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[25]  Richard G. W. Anderson,et al.  Lipid rafts: at a crossroad between cell biology and physics , 2007, Nature Cell Biology.

[26]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[27]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[28]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[29]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[30]  Eric Gouaux,et al.  Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. , 2006, Structure.

[31]  R. Tampé,et al.  Kinetics of the ATP Hydrolysis Cycle of the Nucleotide-binding Domain of Mdl1 Studied by a Novel Site-specific Labeling Technique* , 2006, Journal of Biological Chemistry.

[32]  Jacob Piehler,et al.  Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. , 2006, Journal of the American Chemical Society.

[33]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[34]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[35]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[37]  杉山 佳子 Determination of absolute protein numbers in single synapses by a GFP-based calibration technique , 2005 .

[38]  Daniel Choquet,et al.  Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors , 2004, Nature Neuroscience.

[39]  Daniel Choquet,et al.  Direct imaging of lateral movements of AMPA receptors inside synapses , 2003, The EMBO journal.

[40]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[41]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[42]  G. A. Blab,et al.  Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. , 2001, Biophysical journal.

[43]  C. Riener,et al.  Anomalous fluorescence enhancement of Cy3 and cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. , 2000, Bioconjugate chemistry.

[44]  H Schindler,et al.  Imaging of single molecule diffusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Werner Baumgartner,et al.  Characterization of Photophysics and Mobility of Single Molecules in a Fluid Lipid Membrane , 1995 .

[46]  N. Bobroff Position measurement with a resolution and noise‐limited instrument , 1986 .