Fast switchable optical vortex generator based on blue phase liquid crystal fork grating

Optical vortices have great potentials in optical communications, quantum computations, micro-manipulations and so on. At present, fast switching and reconfiguring of these beam vortices are still challenges. We proposed a blue phase liquid crystal fork grating by applying a vertical electric field with a forked electrode to the polymer stabilized blue phase liquid crystal cell. A fork shaped phase profile with alternation of isotropic and ordinary refractive indices in the lateral direction is thus obtained. Both fork gratings and fork grating array with different topological charges are demonstrated. They permit rapid optical vortex switching and topological charge tuning, and also exhibit excellent polarization independency and high efficiency.

[1]  Saulius Juodkazis,et al.  Optical vortices from liquid crystal droplets. , 2009, Physical review letters.

[2]  Kateryna Kushnir,et al.  Q-plates micro-arrays for parallel processing of the photon orbital angular momentum , 2014 .

[3]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[4]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[5]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[6]  Wei Hu,et al.  Arbitrary Photo-Patterning in Liquid Crystal Alignments Using DMD Based Lithography System , 2012 .

[7]  R. Burge,et al.  Achromatic design for the generation of optical vortices based on radial spiral phase plates. , 2008, Optics express.

[8]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[9]  Shin-Tson Wu,et al.  Polymer-stabilized blue phase liquid crystals: a tutorial [Invited] , 2011 .

[10]  Shin-Tson Wu,et al.  A microsecond-response polymer-stabilized blue phase liquid crystal , 2011 .

[11]  José R. Salgueiro,et al.  Making optical vortices with computer-generated holograms , 2008 .

[12]  M. Vasnetsov,et al.  Laser beams with screw dislocations in their wavefronts , 2003 .

[13]  Shin-Tson Wu,et al.  Polarization independent adaptive microlens with a blue-phase liquid crystal. , 2011, Optics express.

[14]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[15]  Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals. , 2007, Optics express.

[16]  X. W. Sun,et al.  Generating electrically tunable optical vortices by a liquid crystal cell with patterned electrode , 2008 .

[17]  Shin-Tson Wu,et al.  High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal. , 2011, Optics letters.

[18]  M. Infusino,et al.  Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography. , 2012, Optics express.

[19]  Shin‐Tson Wu,et al.  Emerging Liquid Crystal Displays Based on the Kerr Effect , 2010 .

[20]  Yi-Hsin Lin,et al.  Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals , 2010 .

[21]  Vladimir G. Chigrinov,et al.  Generating Switchable and Reconfigurable Optical Vortices via Photopatterning of Liquid Crystals , 2014, Advanced materials.

[22]  Shin-Tson Wu,et al.  Extended Kerr effect of polymer-stabilized blue-phase liquid crystals , 2010 .

[23]  D. Luo,et al.  Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal. , 2013, Optics express.

[24]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Wei Hu,et al.  Polarization‐independent blue‐phase liquid‐crystal gratings driven by vertical electric field , 2012 .

[26]  Shin‐Tson Wu,et al.  Electro-optics of polymer-stabilized blue phase liquid crystal displays , 2009 .

[27]  Fei Xu,et al.  Liquid crystal gratings based on alternate TN and PA photoalignment. , 2012, Optics express.

[28]  Qing Li,et al.  Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure , 2013 .

[29]  Xiahui Wang,et al.  A polarization converter array using a twisted-azimuthal liquid crystal in cylindrical polymer cavities. , 2013, Optics express.

[30]  E. Brasselet,et al.  Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons. , 2011, Optics letters.

[31]  Yikai Su,et al.  1D/2D switchable grating based on field-induced polymer stabilized blue phase liquid crystal , 2012 .

[32]  Yan-qing Lu,et al.  A fast response variable optical attenuator based on blue phase liquid crystal. , 2013, Optics express.

[33]  Enrico Santamato,et al.  Tunable liquid crystal q-plates with arbitrary topological charge. , 2011, Optics express.