Linear programmable nanophotonic processors

Advances in photonic integrated circuits have recently enabled electrically reconfigurable optical systems that can implement universal linear optics transformations on spatial mode sets. This review paper covers progress in such “programmable nanophotonic processors” as well as emerging applications of the technology to problems including classical and quantum information processing and machine learning.

[1]  Didier Felbacq,et al.  Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity , 2000 .

[2]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[3]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[4]  Joshua Combes,et al.  Passive CPHASE Gate via Cross-Kerr Nonlinearities. , 2016, Physical review letters.

[5]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[6]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[7]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[8]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[9]  Ke Li,et al.  Multipurpose silicon photonics signal processor core , 2017, Nature Communications.

[10]  D Psaltis,et al.  Optical implementation of the Hopfield model. , 1985, Applied optics.

[11]  Saikat Guha,et al.  Rate-distance tradeoff and resource costs for all-optical quantum repeaters , 2016, Physical Review A.

[12]  H. Tang,et al.  Broadband nanoelectromechanical phase shifting of light on a chip , 2013, 1312.2454.

[13]  Chi-Sang Poon,et al.  Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities , 2011, Front. Neurosci..

[14]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[15]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[16]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[17]  Catherine E. Graves,et al.  Memristor‐Based Analog Computation and Neural Network Classification with a Dot Product Engine , 2018, Advanced materials.

[18]  Andrew S. Cassidy,et al.  Convolutional networks for fast, energy-efficient neuromorphic computing , 2016, Proceedings of the National Academy of Sciences.

[19]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[20]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[21]  Ming C. Wu,et al.  Large-scale silicon photonic switches with movable directional couplers , 2015 .

[22]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[23]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[24]  David A. B. Miller,et al.  All-optical mode unscrambling on a silicon photonic chip , 2015 .

[25]  David A. B. Miller,et al.  Setting up meshes of interferometers - reversed local light interference method , 2017 .

[26]  Dirk Englund,et al.  Quantum logic using correlated one-dimensional quantum walks , 2018 .

[27]  Indranil Saha,et al.  journal homepage: www.elsevier.com/locate/neucom , 2022 .

[28]  David A. B. Miller,et al.  Perfect optics with imperfect components , 2015 .

[29]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[30]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[31]  Christopher V. Poulton,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2017 .

[32]  Bastian Hacker,et al.  A photon–photon quantum gate based on a single atom in an optical resonator , 2016, Nature.

[33]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[34]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[35]  Jeroen De Coster,et al.  Imec iSiPP25G silicon photonics: a robust CMOS-based photonics technology platform , 2015, Photonics West - Optoelectronic Materials and Devices.

[36]  Zhenhua Ni,et al.  Monolayer graphene as a saturable absorber in a mode-locked laser , 2010, 1007.2243.

[37]  Gregory R. Steinbrecher,et al.  High-fidelity quantum state evolution in imperfect photonic integrated circuits , 2015 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[39]  Wim Bogaerts,et al.  Demonstration of a 4 × 4-port universal linear circuit , 2016 .

[40]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[41]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[42]  E. Eleftheriou,et al.  All-memristive neuromorphic computing with level-tuned neurons , 2016, Nanotechnology.

[43]  Anantha Chandrakasan,et al.  Conv-RAM: An energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[44]  William G. Hoover,et al.  Time Reversibility, Computer Simulation, And Chaos , 1999 .

[45]  Shanhui Fan,et al.  Training of Photonic Neural Networks through In Situ Backpropagation , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[46]  Sergio Gomez Colmenarejo,et al.  Hybrid computing using a neural network with dynamic external memory , 2016, Nature.

[47]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[48]  Hang Guan,et al.  Phase coherence length in silicon photonic platform. , 2015, Optics express.

[49]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[50]  Gregory R. Steinbrecher,et al.  Quantum transport simulations in a programmable nanophotonic processor , 2015, Nature Photonics.

[51]  Joel Emer,et al.  Eyeriss: an Energy-efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks Accessed Terms of Use , 2022 .

[52]  Rajeev J. Ram,et al.  Ultra-efficient CMOS fiber-to-chip grating couplers , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[53]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[54]  David A. B. Miller,et al.  Sorting out light , 2015, Science.

[55]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[56]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[57]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[58]  Edo Waks,et al.  A single-photon switch and transistor enabled by a solid-state quantum memory , 2018, Science.

[59]  David A B Miller How complicated must an optical component be? , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[60]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[61]  Michael R Watts,et al.  Adiabatic microring resonators. , 2010, Optics letters.

[62]  R. Soref,et al.  Reconfigurable lattice mesh designs for programmable photonic processors and universal couplers , 2016, 2016 18th International Conference on Transparent Optical Networks (ICTON).

[63]  Bhavin J. Shastri,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2016, Scientific Reports.

[64]  D. Miller,et al.  Unscrambling light—automatically undoing strong mixing between modes , 2015, Light: Science & Applications.

[65]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[66]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[67]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[68]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[69]  Hossein Hashemi,et al.  15.4 A 1024-element scalable optical phased array in 0.18µm SOI CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[70]  Frederic Boeuf,et al.  High-efficiency, Low-loss Optical Phase Modulator based on III-V/Si Hybrid MOS Capacitor , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[71]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[72]  Ivana Gasulla,et al.  Programmable multifunctional integrated nanophotonics , 2018, Nanophotonics.

[73]  Dirk Englund,et al.  Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. , 2017, Nano letters.

[74]  A C Selden,et al.  Pulse transmission through a saturable absorber , 1967 .

[75]  Mihir K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[76]  D. Miller,et al.  Self-aligning universal beam coupler. , 2013, Optics express.

[77]  Xu,et al.  Experimental observations of bistability and instability in a two-dimensional nonlinear optical superlattice. , 1993, Physical review letters.

[78]  B. Shen,et al.  An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint , 2015, Nature Photonics.