A Survey on Nonsmooth Critical Point Theory and Applications

In the recent years, new advances have been obtained in critical point theory for nonsmooth functionals and in applications to nonlinear differential equations. Here we provide a survey on some of such progresses.

[1]  A. Ioffe,et al.  Metric critical point theory. 1. Morse regularity and homotopic stability of a minimum , 1996 .

[2]  Marco Degiovanni,et al.  Perturbations of even nonsmooth functionals , 1995, Differential and Integral Equations.

[3]  Marco Degiovanni,et al.  A critical point theory for nonsmooth functional , 1994 .

[4]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[5]  J. Craggs Applied Mathematical Sciences , 1973 .

[6]  Marco Degiovanni Homotopical properties of a class of nonsmooth functions , 1990 .

[7]  Sergio Lancelotti Infinitely many solutions for one-dimensional eigenvalue problems for variational inequalities , 1995, ANNALI DELL UNIVERSITA DI FERRARA.

[8]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[9]  A. Canino Multiplicity of solutions for quasilinear elliptic equations , 1995 .

[10]  Jean-Noël Corvellec,et al.  Quantitative deformation theorems and critical point theory , 1999 .

[11]  A. Canino On a jumping problem for quasilinear elliptic equations , 1997 .

[12]  R. Lucchetti,et al.  NONTRIVIAL SOLUTIONS OF QUASILINEAR EQUATIONS IN BV , 1996 .

[13]  Marco Degiovanni,et al.  Closed Geodesics with Lipschitz Obstacle , 1999 .

[14]  J. Corvellec,et al.  Nontrivial Solutions of Quasilinear Equations via Nonsmooth Morse Theory , 1997 .

[15]  Kuang-Chao Chang In nite Dimensional Morse Theory and Multiple Solution Problems , 1992 .

[16]  L. Boccardo,et al.  Critical points for multiple integrals of the calculus of variations , 1996 .

[17]  F. Gazzola,et al.  Weak solutions of quasilinear elliptic PDE's at resonance , 1997 .

[18]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[19]  R. Rockafellar Generalized Directional Derivatives and Subgradients of Nonconvex Functions , 1980, Canadian Journal of Mathematics.

[20]  Sergio Lancelotti Perturbations of symmetric constraints in eigenvalue problems for variational inequalities , 1996 .

[21]  Marco Degiovanni,et al.  Deformation properties for continuous functionals and critical point theory , 1993 .

[22]  M. Marzocchi Multiple Solutions of Quasilinear Equations Involving an Area-Type Term , 1995 .

[23]  Guy Katriel,et al.  Mountain pass theorems and global homeomorphism theorems , 1994 .

[24]  R. Palais Lusternik-Schnirelman theory on Banach manifolds , 1966 .

[25]  M. Frigon On a critical point theory for multivalued functionals and application to partial differential inclusions , 1998 .

[26]  M. Struwe Quasilinear elliptic eigenvalue problems , 1983 .

[27]  Andrzej Szulkin,et al.  Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems , 1986 .

[28]  E. D. Giorgi,et al.  Evolution equations for a class of non­linear operators , 1983 .

[29]  J. Corvellec Morse Theory for Continuous Functionals , 1995 .

[30]  Perturbations of Critical Values in Nonsmooth Critical Point Theory , 1996 .

[31]  Marco Degiovanni,et al.  Subdifferential Calculus and Nonsmooth Critical Point Theory , 2000, SIAM J. Optim..

[32]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[33]  R. Palais Morse theory on Hilbert manifolds , 1963 .

[34]  A. Ambrosetti Critical points and nonlinear variational problems , 1992 .

[35]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[36]  A. Ambrosetti,et al.  On the inversion of some differentiable mappings with singularities between Banach spaces , 1972 .

[37]  E. N. Dancer MINIMAX METHODS IN CRITICAL POINT THEORY WITH APPLICATIONS TO DIFFERENTIAL EQUATIONS (CBMS Regional Conference Series in Mathematics 65) , 1987 .

[38]  Marco Degiovanni,et al.  Evolution equations with lack of convexity , 1985 .

[39]  Marco Degiovanni,et al.  Buckling of nonlinearly elastic rods in the presence of obstacles treated by nonsmooth critical point theory , 1998 .

[40]  R. Lucchetti,et al.  ON A VARIATIONAL APPROACH TO SOME QUASILINEAR PROBLEMS , 1996 .

[41]  F. Gazzola,et al.  Positive entire solutions of quasilinear elliptic problems via nonsmooth critical point theory , 1996 .

[42]  F. Gazzola,et al.  Quasilinear elliptic equations at critical growth , 1998 .

[43]  M. Krastanov,et al.  SPECULATING ABOUT MOUNTAINS , 1996 .

[44]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[45]  Marco Degiovanni,et al.  Nonsmooth critical point theory and quasilinear elliptic equations , 1995 .

[46]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[47]  K. Deimling Nonlinear functional analysis , 1985 .

[48]  Kung-Ching Chang,et al.  Variational methods for non-differentiable functionals and their applications to partial differential equations , 1981 .