Minimal from classical proofs

Abstract Let A be a formula without implications, and Γ consist of formulas containing disjunction and falsity only negatively and implication only positively. Orevkov (1968) and Nadathur (2000) proved that classical derivability of A from Γ implies intuitionistic derivability, by a transformation of derivations in sequent calculi. We give a new proof of this result (for minimal rather than intuitionistic logic), where the input data are natural deduction proofs in long normal form (given as proof terms via the Curry–Howard correspondence) involving stability axioms for relations; the proof gives a quadratic algorithm to remove the stability axioms. This can be of interest for computational uses of classical proofs.

[1]  Thierry Coquand,et al.  Constructive finite free resolutions , 2012 .

[2]  M. M. Richter,et al.  Minimal from Classical Proofs , 2010 .

[3]  Gopalan Nadathur,et al.  Correspondences between classical, intuitionistic and uniform provability , 1998, Theor. Comput. Sci..

[4]  V. P. Orevkov Glivenko Classes of Sequents , 1970 .

[5]  Erik Palmgren An intuitionistic axiomatisation of real closed fields , 2002 .

[6]  A. Troelstra Constructivism in mathematics , 1988 .

[7]  Erik Palmgren An Intuitionistic Axiomatisation of Real Closed Fields , 2002, Math. Log. Q..

[8]  Michael Barr,et al.  Toposes without points , 1974 .

[9]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[10]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[11]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[12]  Thierry Coquand,et al.  A logical approach to abstract algebra , 2006, Math. Struct. Comput. Sci..

[13]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[14]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[15]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[16]  V. P Orevkov Logical and logico-mathematical calculi. 2 , 1974 .

[17]  Sara Negri,et al.  Contraction-free sequent calculi for geometric theories with an application to Barr's theorem , 2003, Arch. Math. Log..

[18]  Thierry Coquand A Logical Approach to Abstract Algebra , 2005, CiE.

[19]  Grigori Mints,et al.  Proof theory in the USSR 1925–1969 , 1991, Journal of Symbolic Logic.

[20]  Helmut Schwichtenberg,et al.  Proof and computations , 2012 .