Introducing Nonuniform Sparse Proximal Averaging Network for Seismic Reflectivity Inversion

We consider the problem of seismic reflectivity inversion, which pertains to the high-resolution recovery of interface locations and reflection coefficients from seismic measurements, which are vital for estimating the subsurface structure. We develop two model-based neural networks within the framework of deep-unfolding. First, we propose a nonuniform minimax concave penalty regularized formulation for reflectivity inversion and unfold the resulting iterative algorithm into a network. Second, we propose a nonuniform sparse model that relies on a combination of regularizers (composite regularization) and develop the nonuniform sparse proximal averaging network (NuSPAN). We demonstrate the efficacy of the proposed approaches over the benchmark techniques through numerical experiments on synthetic 1-D seismic traces and 2-D wedge models. We also report validations on the 2-D Marmousi2 simulated model and 3-D real field measurements from the Penobscot 3D survey off the coast of Nova Scotia, Canada. The accuracy of the proposed approaches is higher than the state-of-the-art techniques in terms of amplitude and support recovery. Further, for Marmousi2, the proposed deep-unfolding networks result in 600× faster inference than the fast iterative shrinkage-thresholding algorithm (FISTA). In terms of combined training and inference times, the learned iterative shrinkage-thresholding algorithm (LISTA) is the fastest. The inference speed-up is significant given that the volume of data is typically large in seismic signal processing.

[1]  Raghu vamshi Hemadri,et al.  Iteratively Reweighted Minimax-Concave Penalty Minimization for Accurate Low-rank Plus Sparse Matrix Decomposition , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jinghuai Gao,et al.  An Adaptive Time-Varying Seismic Super-Resolution Inversion Based on Lp Regularization , 2021, IEEE Geoscience and Remote Sensing Letters.

[3]  Chandra Sekhar Seelamantula,et al.  NuSPAN: A Proximal Average Network for Nonuniform Sparse Model - Application to Seismic Reflectivity Inversion , 2021, ArXiv.

[4]  P. Pokala,et al.  DuRIN: A Deep-unfolded Sparse Seismic Reflectivity Inversion Network , 2021, ArXiv.

[5]  Tomaso Poggio,et al.  Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows , 2021, IEEE Signal Processing Magazine.

[6]  Yonina C. Eldar,et al.  Model-Based Deep Learning , 2020, Proceedings of the IEEE.

[7]  Ying Wang,et al.  Seismic Impedance Inversion Using Fully Convolutional Residual Network and Transfer Learning , 2020, IEEE Geoscience and Remote Sensing Letters.

[8]  Yonina C. Eldar,et al.  Unfolding Neural Networks for Compressive Multichannel Blind Deconvolution , 2020, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Thang Ka Fei,et al.  Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir , 2020 .

[10]  Chandra Sekhar Seelamantula,et al.  Cornet: Composite-Regularized Neural Network For Convolutional Sparse Coding , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[11]  Bahareh Tolooshams,et al.  Deep Residual Autoencoders for Expectation Maximization-Inspired Dictionary Learning , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[12]  Hua Huang,et al.  DNU: Deep Non-Local Unrolling for Computational Spectral Imaging , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Fanchang Zhang,et al.  Debiasing of seismic reflectivity inversion using basis pursuit de-noising algorithm , 2020 .

[14]  Chandra Sekhar Seelamantula,et al.  Confirmnet: Convolutional Firmnet and Application to Image Denoising and Inpainting , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Jianwei Ma,et al.  Velocity model building in a crosswell acquisition geometry with image-trained artificial neural networks , 2020 .

[16]  Yonina C. Eldar,et al.  Efficient and Interpretable Deep Blind Image Deblurring Via Algorithm Unrolling , 2020, IEEE Transactions on Computational Imaging.

[17]  Yonina C. Eldar,et al.  Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing , 2019, IEEE Signal Processing Magazine.

[18]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[19]  M. Su,et al.  Seismic spectral sparse reflectivity inversion based on SBL-EM: experimental analysis and application , 2019, Journal of Geophysics and Engineering.

[20]  Tariq Alkhalifah,et al.  Deep learning for low-frequency extrapolation from multioffset seismic data , 2019, GEOPHYSICS.

[21]  Mauricio Araya-Polo,et al.  Deep learning-driven velocity model building workflow , 2019, The Leading Edge.

[22]  Laurent Demanet,et al.  Extrapolated full-waveform inversion with deep learning , 2019, GEOPHYSICS.

[23]  Amir Adler,et al.  Deep Recurrent Architectures for Seismic Tomography , 2019, 81st EAGE Conference and Exhibition 2019.

[24]  Xinfei Yan,et al.  Seismic impedance inversion based on cycle-consistent generative adversarial network , 2019, SEG Technical Program Expanded Abstracts 2019.

[25]  Tapan Mukerji,et al.  Prestack and poststack inversion using a physics-guided convolutional neural network , 2019, Interpretation.

[26]  Brian Russell,et al.  Machine learning and geophysical inversion — A numerical study , 2019, The Leading Edge.

[27]  Ghassan AlRegib,et al.  Semi-supervised learning for acoustic impedance inversion , 2019, SEG Technical Program Expanded Abstracts 2019.

[28]  Chandra Sekhar Seelamantula,et al.  FirmNet: A Sparsity Amplified Deep Network for Solving Linear Inverse Problems , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Xin Fan,et al.  Deep Proximal Unrolling: Algorithmic Framework, Convergence Analysis and Applications , 2019, IEEE Transactions on Image Processing.

[30]  Maarten V. de Hoop,et al.  Machine learning for data-driven discovery in solid Earth geoscience , 2019, Science.

[31]  Jianwei Ma,et al.  Deep-learning inversion: a next generation seismic velocity-model building method , 2019, GEOPHYSICS.

[32]  Yuji Kim,et al.  Geophysical inversion versus machine learning in inverse problems , 2018, The Leading Edge.

[33]  Zhongping Zhang,et al.  Data-Driven Seismic Waveform Inversion: A Study on the Robustness and Generalization , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Tapan Mukerji,et al.  Convolutional neural network for seismic impedance inversion , 2018, GEOPHYSICS.

[35]  Jianwei Ma,et al.  Velocity model building with a modified fully convolutional network , 2018, SEG Technical Program Expanded Abstracts 2018.

[36]  Martin J. Blunt,et al.  Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior , 2018, Mathematical Geosciences.

[37]  Alan Richardson,et al.  Seismic Full-Waveform Inversion Using Deep Learning Tools and Techniques , 2018, 1801.07232.

[38]  Raja Giryes,et al.  Learned Convolutional Sparse Coding , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  Ivan W. Selesnick,et al.  Sparse Regularization via Convex Analysis , 2017, IEEE Transactions on Signal Processing.

[40]  Denes Vigh,et al.  Deep learning prior models from seismic images for full-waveform inversion , 2017 .

[41]  Sanyi Yuan,et al.  Sparse Bayesian Learning-Based Time-Variant Deconvolution , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Bernard Ghanem,et al.  ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Chandra Sekhar Seelamantula,et al.  Deep Sparse Coding Using Optimized Linear Expansion of Thresholds , 2017, ArXiv.

[44]  Ulugbek Kamilov,et al.  A Parallel Proximal Algorithm for Anisotropic Total Variation Minimization , 2017, IEEE Transactions on Image Processing.

[45]  Sundeep Rangan,et al.  AMP-Inspired Deep Networks for Sparse Linear Inverse Problems , 2016, IEEE Transactions on Signal Processing.

[46]  Yan Liu,et al.  Weighted Schatten $p$ -Norm Minimization for Image Denoising and Background Subtraction , 2015, IEEE Transactions on Image Processing.

[47]  Lei Liu,et al.  A Fast L1 Linear Estimator and Its Application on Predictive Deconvolution , 2015, IEEE Geoscience and Remote Sensing Letters.

[48]  Rick Chartrand,et al.  Compressed sensing recovery via nonconvex shrinkage penalties , 2015, ArXiv.

[49]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[50]  Wes Hamlyn,et al.  Thin beds, tuning, and AVO , 2014 .

[51]  Lei Zhang,et al.  Weighted Nuclear Norm Minimization with Application to Image Denoising , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Leon Wenliang Zhong,et al.  Gradient Descent with Proximal Average for Nonconvex and Composite Regularization , 2014, AAAI.

[53]  Evan Bianco,et al.  Geophysical tutorial: Well-tie calculus , 2014 .

[54]  Yaoliang Yu,et al.  Better Approximation and Faster Algorithm Using the Proximal Average , 2013, NIPS.

[55]  Mauricio D. Sacchi,et al.  High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy , 2013 .

[56]  Sanyi Yuan,et al.  Spectral sparse Bayesian learning reflectivity inversion , 2013 .

[57]  Rui Zhang,et al.  Seismic sparse-layer reflectivity inversion using basis pursuit decomposition , 2011 .

[58]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[59]  Yann LeCun,et al.  Learning Fast Approximations of Sparse Coding , 2010, ICML.

[60]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[61]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[62]  Heinz H. Bauschke,et al.  The Proximal Average: Basic Theory , 2008, SIAM J. Optim..

[63]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[64]  Gary Martin,et al.  Marmousi2 An elastic upgrade for Marmousi , 2006 .

[65]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[66]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[67]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[68]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[69]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[70]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[71]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[72]  Gary Gibson,et al.  An introduction to seismology , 1996, Inf. Manag. Comput. Secur..

[73]  Roelof Versteeg,et al.  The Marmousi experience; velocity model determination on a synthetic complex data set , 1994 .

[74]  Mauricio D. Sacchi,et al.  Minimum entropy deconvolution with frequency-domain constraints , 1994 .

[75]  D. Oldenburg,et al.  Recovery of the acoustic impedance from reflection seismograms , 1983 .

[76]  A. J. Berkhout,et al.  LEAST‐SQUARES INVERSE FILTERING AND WAVELET DECONVOLUTION , 1977 .

[77]  M. B. Widess HOW THIN IS A THIN BED , 1973 .

[78]  N. Ricker THE FORM AND NATURE OF SEISMIC WAVES AND THE STRUCTURE OF SEISMOGRAMS , 1940 .

[79]  Mauricio D. Sacchi,et al.  Automatic velocity analysis using convolutional neural network and transfer learning , 2020 .

[80]  Wen-Zhan Song,et al.  Optimal Seismic Reflectivity Inversion: Data-Driven ℓp-Loss-ℓq-Regularization Sparse Regression , 2019, IEEE Geosci. Remote. Sens. Lett..

[81]  Amir Adler,et al.  Deep-learning tomography , 2018 .

[82]  Jinghuai Gao,et al.  Inversion-Driven Attenuation Compensation Using Synchrosqueezing Transform , 2018, IEEE Geoscience and Remote Sensing Letters.

[83]  Chandra Sekhar Seelamantula,et al.  DNNs for Sparse Coding and Dictionary Learning , 2017 .

[84]  Jingnan Li,et al.  Reflectivity inversion for attenuated seismic data: Physical modeling and field data experiments , 2016 .

[85]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[86]  Hai-Man Chung,et al.  FREQUENCY CHARACTERISTICS OF SEISMIC REFLECTIONS FROM THIN BEDS , 2004 .

[87]  Robert D. Nowak,et al.  Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.