State-based SHOSLIF for indoor visual navigation

Vision-based navigation is investigated using SHOSLIF that incorporates states and a visual attention mechanism. The problem is formulated as an observation-driven Markov model (ODMM) which is realized through recursive partitioning regression. A stochastic recursive partition tree (SRPT), which maps a preprocessed current input raw image and the previous state into the current state and the next control signal is used for efficient recursive partitioning regression. The SRPT learns incrementally: each learning sample is rejected or learned "on-the-fly". The proposed scheme has been successfully applied to indoor navigation.

[1]  Juyang Weng,et al.  Incremental learning for vision-based navigation , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[2]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[3]  Jake K. Aggarwal,et al.  Significant line segments for an indoor mobile robot , 1993, IEEE Trans. Robotics Autom..

[4]  Olivier Faugeras,et al.  Maintaining representations of the environment of a mobile robot , 1988, IEEE Trans. Robotics Autom..

[5]  Larry S. Davis,et al.  An improved radial basis function network for visual autonomous road following , 1996, IEEE Trans. Neural Networks.

[6]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Charles E. Thorpe,et al.  ELVIS: Eigenvectors for Land Vehicle Image System , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[8]  Thomas M. Cover,et al.  Estimation by the nearest neighbor rule , 1968, IEEE Trans. Inf. Theory.

[9]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[10]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[11]  David Lowe,et al.  The optimised internal representation of multilayer classifier networks performs nonlinear discriminant analysis , 1990, Neural Networks.

[12]  S. Yakowitz Nonparametric density and regression estimation for Markov sequences without mixing assumptions , 1989 .

[13]  Ishwar K. Sethi,et al.  Decision tree performance enhancement using an artificial neural network implementation1 1This work was supported in part by NSF grant IRI-9002087 , 1991 .

[14]  Martial Hebert,et al.  Vision and navigation for the Carnegie-Mellon Navlab , 1988 .

[15]  E. Oja,et al.  On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix , 1985 .

[16]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[17]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[18]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  M. Meng,et al.  Mobile robot navigation using neural networks and nonmetrical environmental models , 1993, IEEE Control Systems.

[20]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[21]  J. Friedman Multivariate adaptive regression splines , 1990 .

[22]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[23]  S. Zeger,et al.  Markov regression models for time series: a quasi-likelihood approach. , 1988, Biometrics.

[24]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[25]  Charles E. Thorpe,et al.  Vision and Navigation , 1990 .

[26]  Ernst D. Dickmanns,et al.  Vehicles Capable of Dynamic Vision , 1997, IJCAI.

[27]  C. Thorpe,et al.  Explicit models for robot road following , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[28]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[29]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[30]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[31]  S. Yakowitz NEAREST‐NEIGHBOUR METHODS FOR TIME SERIES ANALYSIS , 1987 .

[32]  Juyang Weng,et al.  Vision-guided navigation using SHOSLIF , 1998, Neural Networks.

[33]  Takeo Kanade,et al.  Toward autonomous driving: the CMU Navlab. Part I - Perception , 1991, IEEE Expert.