Multiple-Attribute Decision-Making Based on Archimedean Bonferroni Operators of q-Rung Orthopair Fuzzy Numbers

The theory of <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-rung orthopair fuzzy sets (<inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-ROFSs) proposed by Yager effectively describes fuzzy information in the real world. Because <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-ROFSs contain the parameter <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula> and can adjust the range of expressed fuzzy information, they are superior to both intuitionistic and Pythagorean fuzzy sets. Archimedean T-norm and T-conorm (ATT) is an important tool used to generate operational rules based on the <italic>q</italic>-rung orthopair fuzzy numbers (<inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-ROFNs). In comparison, the Bonferroni mean (BM) operator has an advantage because it considers the interrelationships between the different attributes. Therefore, it is an important and meaningful innovation to extend the BM operator to the <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-ROFNs based upon the ATT. In this paper, we first discuss <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-rung orthopair fuzzy operational rules by using ATT. Furthermore, we extend BM operator to the <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-ROFNs and propose the <inline-formula><tex-math notation="LaTeX">$q$</tex-math></inline-formula>-rung orthopair fuzzy Archimedean BM <inline-formula><tex-math notation="LaTeX">$(q\hbox{-}{ROFABM})$</tex-math></inline-formula> operator and the <italic>q</italic>-rung orthopair fuzzy weighted Archimedean BM <inline-formula><tex-math notation="LaTeX">$(q\hbox{-}{ROFWABM})$</tex-math></inline-formula> operator and study their desirable properties. Then, a new multiple-attribute decision-making (MADM) method is developed based on <inline-formula><tex-math notation="LaTeX">$q\hbox{-}{ROFWABM}$</tex-math></inline-formula> operator. Finally, we use a practical example to verify effectiveness and superiority by comparing to other existing methods.

[1]  Peide Liu,et al.  Research on the supplier selection of a supply chain based on entropy weight and improved ELECTRE-III method , 2011 .

[2]  Fan-Yong Meng,et al.  An Approach for Group Decision Making With Interval Fuzzy Preference Relations Based on Additive Consistency and Consensus Analysis , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[3]  K. Atanassov More on intuitionistic fuzzy sets , 1989 .

[4]  Glad Deschrijver,et al.  The Archimedean property for t-norms in interval-valued fuzzy set theory , 2006, Fuzzy Sets Syst..

[5]  Peide Liu,et al.  Some Hamacher Aggregation Operators Based on the Interval-Valued Intuitionistic Fuzzy Numbers and Their Application to Group Decision Making , 2014, IEEE Transactions on Fuzzy Systems.

[6]  Zeshui Xu,et al.  Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets , 2014, Int. J. Intell. Syst..

[7]  Huchang Liao,et al.  Isomorphic Multiplicative Transitivity for Intuitionistic and Interval-Valued Fuzzy Preference Relations and Its Application in Deriving Their Priority Vectors , 2018, IEEE Transactions on Fuzzy Systems.

[8]  Ronald R. Yager,et al.  Generalized Orthopair Fuzzy Sets , 2017, IEEE Transactions on Fuzzy Systems.

[9]  Jen-Ping Peng,et al.  The incorporation of the Taguchi and the VIKOR methods to optimize multi-response problems in intuitionistic fuzzy environments , 2015 .

[10]  Ranjit Biswas,et al.  Some operations on intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[11]  Hak-Keung Lam,et al.  Adaptive Sliding Mode Control for Interval Type-2 Fuzzy Systems , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[12]  Ting-Yu Chen,et al.  A note on distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric , 2007, Fuzzy Sets Syst..

[13]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[14]  Ronald R. Yager,et al.  Pythagorean Membership Grades, Complex Numbers, and Decision Making , 2013, Int. J. Intell. Syst..

[15]  Chin-Teng Lin,et al.  A New Method for Intuitionistic Fuzzy Multiattribute Decision Making , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[16]  Enrique Herrera-Viedma,et al.  A New Consensus Model for Group Decision Making Problems With Non-Homogeneous Experts , 2014, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[17]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[18]  Xin Zhang,et al.  Multiple attribute group decision making methods based on intuitionistic fuzzy frank power aggregation operators , 2015, J. Intell. Fuzzy Syst..

[19]  Qi Song,et al.  On the entropy for Atanassov's intuitionistic fuzzy sets: An interpretation from the perspective of amount of knowledge , 2014, Appl. Soft Comput..

[20]  Harish Garg,et al.  Generalized Pythagorean Fuzzy Geometric Aggregation Operators Using Einstein t‐Norm and t‐Conorm for Multicriteria Decision‐Making Process , 2017, Int. J. Intell. Syst..

[21]  Amit Konar,et al.  General and Interval Type-2 Fuzzy Face-Space Approach to Emotion Recognition , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[22]  Glad Deschrijver,et al.  Arithmetic operators in interval-valued fuzzy set theory , 2007, Inf. Sci..

[23]  Shouzhen Zeng,et al.  A Method Based on Intuitionistic Fuzzy Dependent Aggregation Operators for Supplier Selection , 2013 .

[24]  Li,et al.  AN INTUITIONISTIC FUZZY-TODIM METHOD TO SOLVE DISTRIBUTOR EVALUATION AND SELECTION PROBLEM , 2015 .

[25]  Shyi-Ming Chen,et al.  A novel similarity measure between Atanassov's intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition , 2015, Inf. Sci..

[26]  Peng Wang,et al.  Some q‐Rung Orthopair Fuzzy Aggregation Operators and their Applications to Multiple‐Attribute Decision Making , 2018, Int. J. Intell. Syst..

[27]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[28]  Etienne Kerre,et al.  A generalization of operators on intuitionistic fuzzy sets using triangular norms and conorms , 2002 .

[29]  Cheng-Fan Li,et al.  A New Fuzzy Clustering Method With Neighborhood Distance Constraint for Volcanic Ash Cloud , 2016, IEEE Access.

[30]  Zeshui Xu,et al.  Pythagorean fuzzy TODIM approach to multi-criteria decision making , 2016, Appl. Soft Comput..

[31]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[32]  Shyi-Ming Chen,et al.  Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making , 2018, J. Oper. Res. Soc..

[33]  Humberto Bustince,et al.  On averaging operators for Atanassov's intuitionistic fuzzy sets , 2011, Inf. Sci..

[34]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[35]  Ronald R. Yager,et al.  Pythagorean Membership Grades in Multicriteria Decision Making , 2014, IEEE Transactions on Fuzzy Systems.

[36]  Loo Hay Lee,et al.  Improving Analytic Hierarchy Process Expert Allocation Using Optimal Computing Budget Allocation , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[37]  Shuai Zhang,et al.  Combined Approach for Government E-Tendering Using GA and TOPSIS with Intuitionistic Fuzzy Information , 2015, PloS one.

[38]  Bo-Hyeun Wang,et al.  On generalized Hamacher families of triangular operators , 1998, Int. J. Approx. Reason..

[39]  Shyi-Ming Chen,et al.  Group Decision Making Based on Heronian Aggregation Operators of Intuitionistic Fuzzy Numbers , 2017, IEEE Transactions on Cybernetics.

[40]  Peide Liu,et al.  Some Generalized Einstein Aggregation Operators Based on the Interval-Valued Intuitionistic Fuzzy Numbers and Their Application to Group Decision Making , 2015 .

[41]  Harish Garg,et al.  A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making , 2016, Int. J. Intell. Syst..

[42]  Xiaolu Zhang,et al.  Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods , 2016, Inf. Sci..

[43]  Zeshui Xu,et al.  Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm , 2012, Knowl. Based Syst..

[44]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[45]  Yong Yang,et al.  Some Results for Pythagorean Fuzzy Sets , 2015, Int. J. Intell. Syst..

[46]  Carlo Bonferroni Sulle medie multiple di potenze , 1950 .

[47]  Zeshui Xu,et al.  Intuitionistic Fuzzy Bonferroni Means , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[48]  Shyi-Ming Chen,et al.  A new method for fuzzy multiple attributes group decision making based on interval type-2 fuzzy sets and the TOPSIS method , 2014, 2014 International Conference on Machine Learning and Cybernetics.