Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing

Abstract. A new aerosol retrieval algorithm using multi-angular total and polarized measurements is presented. The algorithm retrieves aerosol optical depth (AOD), fine-mode fraction (FMF) for studying the impact of aerosol on climate change. The retrieval algorithm is based on a lookup table (LUT) method, which assumes that one fine and one coarse lognormal aerosol modes can be combined with proper weightings to represent the ambient aerosol properties. To reduce the ambiguity in retrieval algorithm, the key characteristics of aerosol model over East Asia are constrained using the cluster analysis technique based on the AERONET sun-photometer observation over East Asia, and the fine and coarse modes are not fixed but can vary. A mixing model of bare soil and green vegetation spectra and the Nadal and Breon model for the bidirectional polarized reflectance factor (BPDF) were used to simulate total and polarized surface reflectance of East Asia. By applying the present algorithm to POLDER measurements, three different aerosol cases of clear, polluted and dust are analyzed to test the algorithm. The comparison of retrieved aerosol optical depth (AOD) and fine-mode fraction (FMF) with those of AERONET sun-photometer observations show reliable results. Preliminary validation is encouraging. Using the new aerosol retrieval algorithm for multi-angular total and polarized measurements, the spatial and temporal variability of anthropogenic aerosol optical properties over East Asia, which were observed during a heavy polluted event, were analyzed. Exceptionally high values of aerosol optical depth contributed by fine mode of up to 0.5 (at 0.865 μm), and high values of fine-mode fraction of up to 0.9, were observed in this case study.

[1]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[2]  Meinrat O. Andreae,et al.  Strong present-day aerosol cooling implies a hot future , 2005, Nature.

[3]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[4]  A Lacis,et al.  Climate forcings in the industrial era. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Beat Schmid,et al.  Polarimetric remote sensing of aerosols over land , 2009 .

[6]  A. Hauser,et al.  NOAA AVHRR derived aerosol optical depth over land , 2005 .

[7]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[8]  Reto Knutti,et al.  Climate Forcing by Aerosols--a Hazy Picture , 2003, Science.

[9]  J. Hansen,et al.  Perspective: Climate Forcings in the Industrial Era , 1998 .

[10]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[11]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[12]  David J. Diner,et al.  A modified linear‐mixing method for calculating atmospheric path radiances of aerosol mixtures , 1997 .

[13]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  Otto P. Hasekamp,et al.  Retrieval of aerosol properties over the ocean from multispectral single‐viewing‐angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study , 2005 .

[15]  Pavel Litvinov,et al.  Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements , 2011 .

[16]  Pavel Litvinov,et al.  Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements , 2010 .

[17]  Xingfa Gu,et al.  The reflection and polarization properties of non-spherical aerosol particles , 2010 .

[18]  Sundar A. Christopher,et al.  Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model , 2008 .

[19]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[20]  Stéphane Colzy,et al.  Cloud Detection from the Spaceborne POLDER Instrument and Validation against Surface Synoptic Observations , 1999 .

[21]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[22]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[23]  Robert J. Charlson,et al.  Climate: The Influence of Aerosols , 1969 .

[24]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[25]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[26]  M. Mishchenko,et al.  Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight , 1997 .

[27]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[28]  W. V. Hoyningen-Huene,et al.  Retrieval of aerosol optical thickness over land surfaces from top‐of‐atmosphere radiance , 2003 .

[29]  Florence Nadal,et al.  Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[30]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[31]  T. Eck,et al.  Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean , 2005 .

[32]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[33]  David J. Delene,et al.  Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites , 2002 .

[34]  M. Chin,et al.  Aerosol anthropogenic component estimated from satellite data , 2005 .

[35]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[36]  W. Landman Climate change 2007: the physical science basis , 2010 .

[37]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[38]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[39]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[40]  Alfred Wiedensohler,et al.  Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview , 2001 .

[41]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[42]  H. Gordon,et al.  Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution. , 1994, Applied optics.

[43]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[44]  O. Boucher,et al.  Global estimate of aerosol direct radiative forcing from satellite measurements , 2005, Nature.

[45]  Yoram J. Kaufman,et al.  Retrieving global aerosol sources from satellites using inverse modeling , 2008 .

[46]  Peter R. J. North,et al.  The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light , 2009 .

[47]  M. J. Costa,et al.  Aerosol Characterization and Direct Radiative Forcing Assessment over the Ocean. Part I: Methodology and Sensitivity Analysis , 2004 .

[48]  K. Lee,et al.  Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days , 2010 .

[49]  Jens Redemann,et al.  Retrieval of Aerosol Scattering and Absorption Properties from Photopolarimetric Observations over the Ocean during the CLAMS Experiment , 2005 .

[50]  A. Kokhanovsky,et al.  Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments , 2007, Atmospheric Research.

[51]  Yoram J. Kaufman,et al.  An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols , 2005 .

[52]  Graeme L. Stephens,et al.  A new polarized atmospheric radiative transfer model , 1991 .

[53]  Xingfa Gu,et al.  Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements , 2011 .

[54]  Jean-François Léon,et al.  Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method , 2007 .

[55]  J. Deuze,et al.  Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. , 2009, Applied optics.

[56]  D. Chu,et al.  Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction , 2005 .

[57]  M. Mishchenko,et al.  Satellite remote sensing reveals regional tropospheric aerosol trends. , 2007, Optics express.

[58]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[59]  Oleg Dubovik,et al.  Non‐spherical aerosol retrieval method employing light scattering by spheroids , 2002 .

[60]  Pavel Litvinov,et al.  Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements , 2011 .

[61]  M. Mishchenko,et al.  Reprint of: T-matrix computations of light scattering by nonspherical particles: a review , 1996 .