A result on Hamiltonian line graphs involving restrictions on induced subgraphs

It is shown that the existence of a Hamilton cycle in the line graph of a graph G can be ensured by imposing certain restrictions on certain induced subgraphs of G. Thereby a number of known results on hamiltonian line graphs are improved, including the earliest results in terms of vertex degrees. One particular consequence is that every graph of diameter 2 and order at least 4 has a hamiltonian line graph.