A Study of Impacts of Coupled Model Initial Shocks and State–Parameter Optimization on Climate Predictions Using a Simple Pycnocline Prediction Model

AbstractA skillful decadal prediction that foretells varying regional climate conditions over seasonal–interannual to multidecadal time scales is of societal significance. However, predictions initialized from the climate-observing system tend to drift away from observed states toward the imperfect model climate because of the model biases arising from imperfect model equations, numeric schemes, and physical parameterizations, as well as the errors in the values of model parameters. Here, a simple coupled model that simulates the fundamental features of the real climate system and a “twin” experiment framework are designed to study the impact of initialization and parameter optimization on decadal predictions. One model simulation is treated as “truth” and sampled to produce “observations” that are assimilated into other simulations to produce observation-estimated states and parameters. The degree to which the model forecasts based on different estimates recover the truth is an assessment of the impact o...

[1]  R. Asselin,et al.  Frequency Filter for Time Integrations , 2003 .

[2]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[3]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[4]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[5]  A. Rosati,et al.  Detection of multidecadal oceanic variability by ocean data assimilation in the context of a “perfect” coupled model , 2009 .

[6]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[7]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[8]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments , 2008 .

[9]  Jeffrey L. Anderson,et al.  An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .

[10]  Stephen Cusack,et al.  Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model , 2007, Science.

[11]  Shaoqing Zhang,et al.  Impact of observation‐optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model , 2011 .

[12]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[13]  Michael Ghil,et al.  Data Assimilation for a Coupled Ocean–Atmosphere Model. Part II: Parameter Estimation , 2008 .

[14]  S. Zhang,et al.  Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model , 2003 .

[15]  Jeffrey L. Anderson,et al.  Multiple time level adjustment for data assimilation , 2004 .

[16]  Syukuro Manabe,et al.  Interdecadal Variations of the Thermohaline Circulation in a Coupled Ocean-Atmosphere Model , 1993 .

[17]  L. Kornblueh,et al.  Advancing decadal-scale climate prediction in the North Atlantic sector , 2008, Nature.

[18]  Shaoqing Zhang,et al.  Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model , 2003 .

[19]  A. Rosati,et al.  An Inflated Ensemble Filter for Ocean Data Assimilation with a Biased Coupled GCM , 2010 .

[20]  A. Hollingsworth,et al.  The Performance of a Medium-Range Forecast Model in Winter–Impact of Physical Parameterizations , 1980 .

[21]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[22]  T. Delworth,et al.  A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model , 2012 .

[23]  James A. Hansen,et al.  On stochastic parameter estimation using data assimilation , 2007 .

[24]  A. Gnanadesikan,et al.  A simple predictive model for the structure of the oceanic pycnocline , 1999, Science.

[25]  Dick Dee,et al.  Forecast Model Bias Correction in Ocean Data Assimilation , 2005 .

[26]  Jeffrey L. Anderson A Local Least Squares Framework for Ensemble Filtering , 2003 .

[27]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability , 2008 .

[28]  A. Rosati,et al.  System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies , 2007 .

[29]  G. Mason State and Parameter Estimation in Stochastic Dynamical Models , 2011 .

[30]  D. P. DEE,et al.  Bias and data assimilation , 2005 .

[31]  J. Whitaker,et al.  Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter , 2001 .

[32]  J. Annan,et al.  Efficient parameter estimation for a highly chaotic system , 2004 .

[33]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[34]  T. DelSole,et al.  Using the ensemble Kalman filter to estimate multiplicative model parameters , 2008 .

[35]  Bruce D. Cornuelle,et al.  The Forcing of the Pacific Decadal Oscillation , 2005 .

[36]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[37]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .