Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma

Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.

Roland Eils | Thomas Zichner | Hans Lehrach | Volker Hovestadt | Jan Koster | Matthias Schlesner | Barbara Hutter | Chris Lawerenz | Natalie Jäger | Hendrik Witt | Stephan Wolf | Catherine L. Worth | Andrey Korshunov | Nada Jabado | David T. W. Jones | Benedikt Brors | Rogier Versteeg | Jacek Majewski | Jeremy Schwartzentruber | Marc Zapatka | Sebastian Bender | Peter Lichter | Keith L Ligon | Andreas Unterberg | Scott L Pomeroy | Andreas von Deimling | Richard Volckmann | David T W Jones | Dominik Sturm | Till Milde | Guido Reifenberger | Marina Ryzhova | Marcel Kool | Christel Herold-Mende | Martin Hasselblatt | Jan O Korbel | Sabine Schmidt | Marie-Laure Yaspo | Marc Zuckermann | Jan Gronych | C. von Kalle | R. Eils | G. Reifenberger | J. Korbel | A. Stütz | K. Ligon | M. Kool | H. Lehrach | V. Hovestadt | B. Hutter | N. Jäger | P. Northcott | M. Schlesner | P. Lichter | S. Pfister | M. Sultan | M. Yaspo | S. Pomeroy | B. Brors | A. Unterberg | A. von Deimling | Yoon-Jae Cho | R. Versteeg | Benjamin Raeder | T. Zichner | C. Lawerenz | P. Sluis | H. Witt | M. Zuckermann | J. Gronych | A. Korshunov | A. Deimling | M. Schuhmann | O. Witt | J. Koster | S. Radomski | S. Wolf | H. Warnatz | J. Majewski | Dong Anh Khuong Quang | A. Fontebasso | J. Schwartzentruber | D. Faury | Michael D. Taylor | N. Jabado | C. Eberhart | A. Kulozik | P. van Sluis | S. Bender | M. Ebinger | D. Sturm | E. Pfaff | M. Zapatka | M. Kieran | M. Hasselblatt | C. Worth | W. Scheurlen | J. Felsberg | M. Karajannis | M. Ralser | C. Bartholomae | Charles D Imbusch | T. Milde | M. Ryzhova | S. Schmidt | S. Stark | H. Şeker-Cin | C. Kalle | R. Volckmann | S. Hutter | C. Monoranu | Yoon-Jae Cho | Paul A Northcott | Michael D Taylor | Catherine L Worth | Charles G Eberhart | Martin Ebinger | V Peter Collins | Bärbel Lasitschka | Hans-Jörg Warnatz | Elke Pfaff | Adrian M Stütz | Ursula D Weber | Benjamin Raeder | Andreas E Kulozik | Olaf Witt | Matthias A Karajannis | Jörg Felsberg | Camelia Monoranu | Wolfram Scheurlen | Marc Sultan | Christof von Kalle | Bärbel Lasitschka | Martin U Schuhmann | Charles D. Imbusch | Ursula D. Weber | Sonja Hutter | Peter van Sluis | Mark W Kieran | Cynthia C Bartholomae | Damien Faury | Adam M Fontebasso | Beate Winkler | Sebastian Stark | Sally R Lambert | Huriye Şeker-Cin | Meryem Ralser | Sylwester Radomski | S. Lambert | B. Winkler | C. Herold‐Mende | C. Imbusch | V. Collins | Marc Zuckermann | P. V. van Sluis | Sabine Schmidt | B. Raeder

[1]  G. Ming,et al.  Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCγ1 activation for self-renewal of adult neural stem cells , 2009, Molecular Brain.

[2]  D. Carraro,et al.  Multiple mutations in the Kras gene in colorectal cancer: review of the literature with two case reports , 2011, International Journal of Colorectal Disease.

[3]  T. Borodina,et al.  Transcriptome analysis by strand-specific sequencing of complementary DNA , 2009, Nucleic acids research.

[4]  D. Adams,et al.  Activation of K-RAS by co-mutation of codons 19 and 20 is transforming , 2011, Journal of molecular signaling.

[5]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[6]  Matthew B. Callaway,et al.  MuSiC: Identifying mutational significance in cancer genomes , 2012, Genome research.

[7]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[8]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[9]  Fabrice Andre,et al.  Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. , 2013, Cancer discovery.

[10]  D. Pearson,et al.  Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma , 2009, Oncogene.

[11]  Jeffrey L. Brown,et al.  AZ64 inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts , 2012, Cancer Chemotherapy and Pharmacology.

[12]  P. Sismondi,et al.  FGFRI and PLAT genes and DNA amplification at 8p 12 in breast and ovarian cancers , 1993, Genes, chromosomes & cancer.

[13]  M. Matsuda,et al.  The amino‐terminal B‐Raf‐specific region mediates calcium‐dependent homo‐ and hetero‐dimerization of Raf , 2006, The EMBO journal.

[14]  S. Salzberg,et al.  TopHat-Fusion: an algorithm for discovery of novel fusion transcripts , 2011, Genome Biology.

[15]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[16]  S. Pfister,et al.  Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas , 2011, Clinical Cancer Research.

[17]  Ryan Remedios,et al.  Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. , 2006, Developmental Biology.

[18]  Andrew P. Stubbs,et al.  Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. , 2009, Cancer research.

[19]  I. Petersen,et al.  Frequent and Focal FGFR1 Amplification Associates with Therapeutically Tractable FGFR1 Dependency in Squamous Cell Lung Cancer , 2010, Science Translational Medicine.

[20]  R. Sanford,et al.  A 16-Year-Old Male with Noonan’s Syndrome Develops Progressive Scoliosis and Deteriorating Gait , 1999, Pediatric Neurosurgery.

[21]  D. Gutmann,et al.  Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. , 2012, Cancer cell.

[22]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[23]  Thomas Zichner,et al.  DELLY: structural variant discovery by integrated paired-end and split-read analysis , 2012, Bioinform..

[24]  A. Joyner,et al.  FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors , 2003, Development.

[25]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[26]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[27]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[28]  M. A. Pierotti,et al.  Rearrangements of NTRK1 gene in papillary thyroid carcinoma , 2010, Molecular and Cellular Endocrinology.

[29]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[30]  Amy McKee,et al.  On Trk—The TrkB Signal Transduction Pathway Is an Increasingly Important Target in Cancer Biology , 2009, Clinical Cancer Research.

[31]  David T. W. Jones,et al.  MAPK pathway activation in pilocytic astrocytoma , 2011, Cellular and Molecular Life Sciences.

[32]  T. Pietsch,et al.  Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. , 2012, Neuro-oncology.

[33]  P. Sorensen,et al.  ETV6-NTRK3: a chimeric protein tyrosine kinase with transformation activity in multiple cell lineages. , 2005, Seminars in cancer biology.

[34]  S. Moisyadi,et al.  Constitutively active TrkB confers an aggressive transformed phenotype to a neural crest derived cell line , 2013, Oncogene.

[35]  W. Kolch,et al.  Regulation and Role of Raf-1/B-Raf Heterodimerization , 2006, Molecular and Cellular Biology.

[36]  Kai Ye,et al.  Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads , 2009, Bioinform..

[37]  Nature Genetics , 1991, Nature.

[38]  Li Ding,et al.  The Pediatric Cancer Genome Project , 2012, Nature Genetics.

[39]  J. Licht,et al.  Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia , 2003, Nature Genetics.

[40]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[41]  Rogier Versteeg,et al.  Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. , 2005, Cancer letters.

[42]  G. Fishell,et al.  Fibroblast Growth Factor Receptor Signaling Promotes Radial Glial Identity and Interacts with Notch1 Signaling in Telencephalic Progenitors , 2004, The Journal of Neuroscience.

[43]  David R Kaplan,et al.  Neurotrophin signal transduction in the nervous system , 2000, Current Opinion in Neurobiology.

[44]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[45]  J. Allanson,et al.  Noonan Syndrome: Clinical Features, Diagnosis, and Management Guidelines , 2010, Pediatrics.

[46]  David T. W. Jones,et al.  Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma , 2011, Acta Neuropathologica.

[47]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[48]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[49]  G. Nikkhah,et al.  BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model , 2011, Clinical Cancer Research.

[50]  M. Broggini,et al.  RAS/RAF/MEK inhibitors in oncology. , 2012, Current medicinal chemistry.

[51]  David T. W. Jones,et al.  An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice. , 2011, The Journal of clinical investigation.

[52]  D. Gutmann,et al.  Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. , 2010, Genes & development.

[53]  K. Anderson,et al.  The Precise Sequence of FGF Receptor Autophosphorylation Is Kinetically Driven and Is Disrupted by Oncogenic Mutations , 2009, Science Signaling.

[54]  M. Meyerson,et al.  Inhibitor-Sensitive FGFR1 Amplification in Human Non-Small Cell Lung Cancer , 2011, PloS one.

[55]  B. Neel,et al.  The tyrosine phosphatase Shp2 (PTPN11) in cancer , 2008, Cancer and Metastasis Reviews.

[56]  Martin Zenker,et al.  Clinical manifestations of mutations in RAS and related intracellular signal transduction factors , 2011, Current opinion in pediatrics.

[57]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[58]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[59]  G. Reifenberger,et al.  BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. , 2008, The Journal of clinical investigation.

[60]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[61]  T. Merchant,et al.  Survival and long-term health and cognitive outcomes after low-grade glioma. , 2011, Neuro-oncology.

[62]  D. Desruisseau,et al.  Pilocytic astrocytoma in a child with Noonan syndrome , 2009, Pediatric blood & cancer.

[63]  D. Barford,et al.  Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF , 2004, Cell.

[64]  H. Lehrach,et al.  A simple strand-specific RNA-Seq library preparation protocol combining the Illumina TruSeq RNA and the dUTP methods. , 2012, Biochemical and biophysical research communications.

[65]  Christopher A. Miller,et al.  Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma , 2013, Genome research.

[66]  E. Kanavakis,et al.  Tumor development in three patients with Noonan syndrome , 2008, European Journal of Pediatrics.

[67]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[68]  P. Hevezi,et al.  Gene expression analyses reveal molecular relationships among 20 regions of the human CNS , 2006, Neurogenetics.

[69]  T. Haferlach,et al.  Identification of a novel type of ITD mutations located in nonjuxtamembrane domains of the FLT3 tyrosine kinase receptor. , 2009, Blood.

[70]  S. Levy,et al.  Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Hayman,et al.  Molecular Mechanism for a Role of SHP2 in Epidermal Growth Factor Receptor Signaling , 2003, Molecular and Cellular Biology.

[72]  A. Resnick,et al.  Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas , 2013, Proceedings of the National Academy of Sciences.

[73]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[74]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[75]  Michael C. Rusch,et al.  CREST maps somatic structural variation in cancer genomes with base-pair resolution , 2011, Nature Methods.

[76]  D. Gutmann,et al.  Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. , 2012, Genes & development.

[77]  Bruce D Gelb,et al.  Noonan syndrome and related disorders: genetics and pathogenesis. , 2005, Annual review of genomics and human genetics.