Ferroelectrically tunable magnetic skyrmions in two-dimensional multiferroics.

Magnetic skyrmions are topologically protected entities that are promising for information storage and processing. Currently, an essential challenge for future advances of skyrmionic devices lies in achieving effective control of skyrmion properties. Here, through first-principles and Monte-Carlo simulations, we report the identification of nontrivial topological magnetism in two-dimensional multiferroics of Co2NF2. Because of ferroelectricity, monolayer Co2NF2 exhibits a large Dzyaloshinskii-Moriya interaction. This together with exchange interaction can stabilize magnetic skyrmions with the size of sub-10 nm under a moderate magnetic field. Importantly, arising from the magnetoelectric coupling effect, the chirality of magnetic skyrmions is ferroelectrically tunable, producing the four-fold degenerate skyrmions. When interfacing with monolayer MoSe2, the creation and annihilation of magnetic skyrmions, as well as phase transition between skyrmion and skyrmion lattice, can be realized in a ferroelectrically controllable fashion. A dimensionless parameter κ' is further proposed as the criterion for stabilizing magnetic skyrmions in such multiferroic lattices. Our work greatly enriches the two-dimensional skyrmionics and multiferroics research.

[1]  S. Heinze,et al.  Strain-Driven Zero-Field Near-10 nm Skyrmions in Two-Dimensional van der Waals Heterostructures. , 2022, Nano letters.

[2]  Jian Zhou,et al.  Toward Room-Temperature Electrical Control of Magnetic Order in Multiferroic van der Waals Materials. , 2022, Nano letters.

[3]  A. Dimoulas,et al.  Magnetic skyrmion manipulation in CrTe2/WTe2 2D van der Waals heterostructure , 2022, Applied Physics Letters.

[4]  Kaiying Dou,et al.  Spontaneous Magnetic Skyrmions in Single-Layer CrInX3 (X = Te, Se). , 2022, Nano letters.

[5]  E. Tsymbal,et al.  Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures. , 2022, Nano letters.

[6]  Zhenxiang Cheng,et al.  Manipulation of Magnetic Skyrmion in a 2D van der Waals Heterostructure via Both Electric and Magnetic Fields , 2021, Advanced Functional Materials.

[7]  Hongcheng Lu,et al.  CoMOF5(pyrazine)(H2O)2 (M = Nb, Ta): Two-Layered Cobalt Oxyfluoride Antiferromagnets with Spin Flop Transitions. , 2021, Inorganic chemistry.

[8]  M. Raju,et al.  Microwave resonances of magnetic skyrmions in thin film multilayers , 2021, Nature Communications.

[9]  C. Panagopoulos,et al.  Physical foundations and basic properties of magnetic skyrmions , 2020, Nature Reviews Physics.

[10]  I. Mertig,et al.  Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles , 2020, 2005.01390.

[11]  Chao Di,et al.  U1 snRNP regulates cancer cell migration and invasion in vitro , 2020, Nature Communications.

[12]  N. Park,et al.  Exploitable magnetic anisotropy of the two-dimensional magnet CrI3. , 2019, Nano letters.

[13]  X. Xi,et al.  Observation of Magnetic Skyrmion Bubbles in a van der Waals ferromagnet Fe3GeTe2. , 2019, Nano letters.

[14]  W. Mi,et al.  Spin‐Dependent Electronic Structure and Magnetic Anisotropy of 2D Ferromagnetic Janus Cr2I3X3 (X = Br, Cl) Monolayers , 2019, Advanced Electronic Materials.

[15]  Yimei Zhu,et al.  Topological magnetic-spin textures in two-dimensional van der Waals Cr2Ge2Te6. , 2019, Nano letters.

[16]  Hyunsoo Yang,et al.  Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures , 2018, Nature Materials.

[17]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[18]  B. Yakobson,et al.  Type-II Multiferroic Hf2VC2F2 MXene Monolayer with High Transition Temperature. , 2018, Journal of the American Chemical Society.

[19]  Y. Tokura,et al.  Noncentrosymmetric Magnets Hosting Magnetic Skyrmions , 2017, Advanced materials.

[20]  Masashi Kawasaki,et al.  Current‐Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet , 2017, Advanced materials.

[21]  Anand Chandrasekaran,et al.  Ferroelectricity, Antiferroelectricity, and Ultrathin 2D Electron/Hole Gas in Multifunctional Monolayer MXene. , 2017, Nano letters.

[22]  H. Béa,et al.  The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field. , 2016, Nano letters.

[23]  A. Stashkevich,et al.  Current-induced skyrmion generation and dynamics in symmetric bilayers , 2016, Nature Communications.

[24]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[25]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[26]  Xiao Cheng Zeng,et al.  Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. , 2016, Nano letters.

[27]  R. Wiesendanger,et al.  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[28]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[29]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[30]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[31]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[32]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[33]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[34]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[35]  Georg Kresse,et al.  Electronic correlation effects in transition-metal sulfides , 2003 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[40]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[41]  M. Toyonaga,et al.  On the implementation of the heat bath algorithms for Monte Carlo simulations of classical Heisenberg spin systems , 1986 .

[42]  J. Kanamori,et al.  Superexchange interaction and symmetry properties of electron orbitals , 1959 .