The Implications of Scaling Approaches for Understanding Resilience and Reorganization in Ecosystems

ABSTRACT Managing ecosystems for resilience—the capacity to maintain function in response to perturbation—is among the most pressing ecological and socioeconomic imperatives of our time. The variability of biological and ecological systems at multiple scales in time and space makes this task even more challenging, yet diverse ecological systems often display striking regularities. These regularities often take the form of scaling laws, which describe how the structure and function of the system change systematically with scale. In this article, we review recent work on the scaling of human settlement sizes and fertility as well as the size distributions of forests. We demonstrate that systematic departures from expected ecological scaling relationships may indicate particular structuring processes (e.g., fire) or the perturbation and reorganization of ecosystems. In sum, we argue that scaling provides a powerful tool for understanding resilience and change in ecological systems.

[1]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[2]  L. R. Taylor,et al.  Aggregation, Variance and the Mean , 1961, Nature.

[3]  K. Yoda,et al.  Self-thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants. XI) , 1963 .

[4]  C. S. Holling Resilience and Stability of Ecological Systems , 1973 .

[5]  W. Westman,et al.  Measuring the Inertia and Resilience of Ecosystems , 1978 .

[6]  J. P. Grime,et al.  Plant Strategies and Vegetation Processes. , 1980 .

[7]  R. Peters Useful Concepts for Predictive Ecology , 1980 .

[8]  Donald L. DeAngelis,et al.  Energy flow, nutrient cycling, and ecosystem resilience. , 1980 .

[9]  J. Damuth,et al.  Population density and body size in mammals , 1981, Nature.

[10]  P. J. Edwards,et al.  World Forest Biomass and Primary Production Data. , 1983 .

[11]  Donald E. Weller,et al.  A Reevaluation of the ‐3/2 Power Rule of Plant Self‐Thinning , 1987 .

[12]  W. Calder Size, Function, and Life History , 1988 .

[13]  M. Savage,et al.  Early 19th‐Century Fire Decline Following Sheep Pasturing in a Navajo Ponderosa Pine Forest , 1990 .

[14]  T. F. H. Allen,et al.  The confusion between scale‐defined levels and conventional levels of organization in ecology , 1990 .

[15]  C. S. Holling Cross-Scale Morphology, Geometry, and Dynamics of Ecosystems , 1992 .

[16]  Monica G. Turner,et al.  Interactions between the fractal geometry of landscapes and allometric herbivory , 1992 .

[17]  S. Levin The problem of pattern and scale in ecology , 1992 .

[18]  J. Greenwood,et al.  The relationship between abundance and body size in natural animal assemblages , 1993 .

[19]  Franco Biondi,et al.  Geostatistically modeling stem size and increment in an old-growth forest , 1994 .

[20]  Karl J. Niklas,et al.  Botanical Scaling. (Book Reviews: Plant Allometry. The Scaling of Form and Process.) , 1994 .

[21]  D. Greene,et al.  Estimating the Mean Annual Seed Production of Trees , 1994 .

[22]  M. Rosenzweig,et al.  Species Diversity in Space and Time , 1995 .

[23]  M. Kappelle,et al.  Ecology of mature and recovering Talamancan montane Quercus forests , 1995 .

[24]  Sergey V. Buldyrev,et al.  Scaling and universality in animate and inanimate systems , 1996 .

[25]  C. S. Holling,et al.  Biological Diversity, Ecosystems, and the Human Scale , 1996 .

[26]  R. O'Neill,et al.  The value of the world's ecosystem services and natural capital , 1997, Nature.

[27]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[28]  James H. Brown,et al.  Allometric scaling of plant energetics and population density , 1998, Nature.

[29]  H. Eugene Stanley,et al.  Dynamics of North American breeding bird populations , 1998, Nature.

[30]  C. S. Holling,et al.  Ecological Resilience, Biodiversity, and Scale , 1998, Ecosystems.

[31]  Susanna C. Manrubia,et al.  Intermittency model for urban development , 1998 .

[32]  Paul A. Keddy,et al.  Community Assembly Rules, Morphological Dispersion, and the Coexistence of Plant Species , 1998 .

[33]  Bruce T. Milne,et al.  Motivation and Benefits of Complex Systems Approaches in Ecology , 1998, Ecosystems.

[34]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[35]  Craig R. Allen,et al.  Body Mass Patterns Predict Invasions and Extinctions in Transforming Landscapes , 1999, Ecosystems.

[36]  A. Kinzig,et al.  Original Articles: Plant Attribute Diversity, Resilience, and Ecosystem Function: The Nature and Significance of Dominant and Minor Species , 1999, Ecosystems.

[37]  Geoffrey B. West,et al.  Scaling in Biology , 2000 .

[38]  L. Gunderson Ecological Resilience—In Theory and Application , 2000 .

[39]  Y. Iwasa,et al.  Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. , 2000, Journal of theoretical biology.

[40]  W. Calder Diversity and convergence: scaling for conservation , 2000 .

[41]  Jay T. Lennon,et al.  Biodiversity may regulate the temporal variability of ecological systems , 2001 .

[42]  James H. Brown,et al.  A general model for ontogenetic growth , 2001, Nature.

[43]  E. Charnov Evolution of mammal life histories , 2001 .

[44]  E. Charnov,et al.  Population fluctuations, power laws and mixtures of lognormal distributions , 2001 .

[45]  Karl J. Niklas,et al.  Invariant scaling relations across tree-dominated communities , 2001, Nature.

[46]  A. Knapp,et al.  Variation among biomes in temporal dynamics of aboveground primary production. , 2001, Science.

[47]  J. Anderies,et al.  From Metaphor to Measurement: Resilience of What to What? , 2001, Ecosystems.

[48]  R. Axtell Zipf Distribution of U.S. Firm Sizes , 2001, Science.

[49]  C. S. Holling,et al.  Resilience and Sustainable Development: Building Adaptive Capacity in a World of Transformations , 2002, Ambio.

[50]  O. Phillips,et al.  Global Patterns of Plant Diversity: Alwyn H. Gentry's Forest Transect Data Set , 2002 .

[51]  C. S. Holling,et al.  Adaptive Inference for Distinguishing Credible from Incredible Patterns in Nature , 2002, Ecosystems.

[52]  Mark L. Taper,et al.  Connecting geographical distributions with population processes , 2002 .

[53]  K. Bessey,et al.  Structure and Dynamics in an Urban Landscape: Toward a Multiscale View , 2002, Ecosystems.

[54]  G. Davidowitz Does precipitation variability increase from mesic to xeric biomes , 2002 .

[55]  J. Randers,et al.  Tracking the ecological overshoot of the human economy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  James H. Brown,et al.  Global Biodiversity, Biochemical Kinetics, and the Energetic-Equivalence Rule , 2002, Science.

[57]  E. Sanderson,et al.  The Human Footprint and the Last of the Wild , 2002 .

[58]  S. Lavorel,et al.  Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail , 2002 .

[59]  Ethan P. White,et al.  Thermodynamic and metabolic effects on the scaling of production and population energy use , 2003 .

[60]  Melanie E. Moses,et al.  Allometry of human fertility and energy use , 2003 .

[61]  Simon A. Levin,et al.  Scale and Scaling in Ecological and Economic Systems , 2003 .

[62]  H. Buckley,et al.  Reverse latitudinal trends in species richness of pitcher-plant food webs , 2003 .

[63]  David A. Coomes,et al.  Disturbances prevent stem size‐density distributions in natural forests from following scaling relationships , 2003 .

[64]  Evan P. Economo,et al.  Scaling metabolism from organisms to ecosystems , 2003, Nature.

[65]  A. Kerkhoff,et al.  The scaling of reproductive variability in trees , 2003 .

[66]  Richard H. Rand,et al.  Tree size frequency distributions, plant density, age and community disturbance , 2003 .

[67]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[68]  Karl J. Niklas,et al.  An allometric model for seed plant reproduction , 2003 .

[69]  Marc L. Imhoff,et al.  Global patterns in human consumption of net primary production , 2004, Nature.

[70]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[71]  Mark Westoby,et al.  A leaf-height-seed (LHS) plant ecology strategy scheme , 1998, Plant and Soil.

[72]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[73]  J. Vandermeer,et al.  Post-agriculture versus post-hurricane succession in southeastern Nicaraguan rain forest , 2001, Plant Ecology.

[74]  J. P. Grime,et al.  The plant traits that drive ecosystems: Evidence from three continents , 2004 .

[75]  A. Kerkhoff,et al.  Plant allometry, stoichiometry and the temperature-dependence of primary productivity , 2005 .

[76]  Craig R. Allen,et al.  The Use of Discontinuities and Functional Groups to Assess Relative Resilience in Complex Systems , 2005, Ecosystems.

[77]  A. Kerkhoff,et al.  Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. , 2006, Ecology letters.

[78]  S. Díaz,et al.  Biodiversity Loss Threatens Human Well-Being , 2006, PLoS biology.

[79]  S. Carpenter,et al.  Rising variance: a leading indicator of ecological transition. , 2006, Ecology letters.

[80]  Mark Westoby,et al.  Land-plant ecology on the basis of functional traits. , 2006, Trends in ecology & evolution.