Constraints on gravitational properties of antimatter from cyclotron-frequency measurements

A fundamental question in physics that has yet to be addressed experimentally is whether particles of antimatter, such as the antiproton or positron, obey the weak equivalence principle (WEP). Several theoretical arguments have been put forward arguing limits for possible violations of WEP. No direct `classical' gravitational experiment, the measurement of the free fall of an antiparticle, has been performed to date to determine if a particle of antimatter would experience a force in the gravitational potential of a normal matter body that is different from normal gravity. 30 years ago we proposed a free fall experiment using protons and antiprotons, modeled after the experiment to measure the gravitational acceleration of a free electron. At that time we gave consideration to yet another possible observation of gravitational differences between matter and antimatter based on the gravitational red shift of clocks. I will recall the original arguments and make a number of comments pertaining to the technic...

[1]  D. Budker,et al.  Limits on violations of Lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. , 2013, Physical review letters.

[2]  P. Perez,et al.  The GBAR experiment: gravitational behaviour of antihydrogen at rest , 2012 .

[3]  D. Sillou,et al.  Proposed antimatter gravity measurement with an antihydrogen beam , 2008 .

[4]  A. Khabbaz,et al.  Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles , 1999 .

[5]  G. Testera The role of the patch effect electric fields in the Penning trap method of measuring the gravitational force on antiprotons , 1997 .

[6]  M. Schauer,et al.  Extraction of ultra-low energy antiprotons from Penning traps , 1996 .

[7]  T. Goldman,et al.  Are antiprotons forever , 1995, hep-ex/9506015.

[8]  G. Moorhead,et al.  The fall of charged particles under gravity : a study of experimental problems , 1992 .

[9]  M. Nieto,et al.  The arguments against ``antigravity'' and the gravitational acceleration of antimatter , 1991 .

[10]  F. Witteborn,et al.  Erratum: Evidence for a temperature-dependent surface shielding effect in Cu [Phys. Rev. Lett. 38, 1220 (1977)] , 1991 .

[11]  Richard J. Hughes,et al.  Constraints on the gravitational properties of antiprotons and positrons from cyclotron-frequency measurements. , 1991, Physical review letters.

[12]  Rogers,et al.  Testing the equivalence principle in the field of the Earth: Particle physics at masses below 1 microeV? , 1990, Physical review. D, Particles and fields.

[13]  Haas,et al.  Cooling and slowing of trapped antiprotons below 100 meV. , 1989, Physical review letters.

[14]  F. Witteborn,et al.  Apparatus for measuring the force of gravity on freely falling electrons , 1977 .

[15]  M. Nieto,et al.  Mass of the graviton , 1974 .

[16]  F. Witteborn,et al.  Experiments to determine the Force of Gravity on Single Electrons and Positrons , 1968, Nature.

[17]  M. Good K20 and the Equivalence Principle , 1961 .

[18]  L. Schiff Sign of the Gravitational Mass of a Positron , 1958 .

[19]  A. Einstein Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes , 1911 .