Fractional zero forcing via three-color forcing games

Abstract An r -fold analogue of the positive semidefinite zero forcing process that is carried out on the r -blowup of a graph is introduced and used to define the fractional positive semidefinite forcing number. Properties of the graph blowup when colored with a fractional positive semidefinite forcing set are examined and used to define a three-color forcing game that directly computes the fractional positive semidefinite forcing number of a graph. We develop a fractional parameter based on the standard zero forcing process and it is shown that this parameter is exactly the skew zero forcing number with a three-color approach. This approach and an algorithm are used to characterize graphs whose skew zero forcing number equals zero.

[1]  Nathan Warnberg,et al.  Positive semidefinite propagation time , 2016, Discret. Appl. Math..

[2]  Simone Severini,et al.  Zero Forcing, Linear and Quantum Controllability for Systems Evolving on Networks , 2011, IEEE Transactions on Automatic Control.

[3]  David E. Roberson,et al.  Orthogonal Representations, Projective Rank, and Fractional Minimum Positive Semidefinite Rank: Connections and New Directions , 2015, 1502.00016.

[4]  Shaun M. Fallat,et al.  Minimum Rank, Maximum Nullity, and Zero Forcing Number of Graphs , 2014 .

[5]  Leslie Hogben,et al.  Minimum rank with zero diagonal , 2014 .

[6]  W. Haemers Zero forcing sets and minimum rank of graphs , 2008 .

[7]  AmosDavid,et al.  Upper bounds on the k -forcing number of a graph , 2015 .

[8]  Shaun M. Fallat,et al.  Zero forcing parameters and minimum rank problems , 2010, 1003.2028.

[9]  Yair Caro,et al.  Upper bounds on the k-forcing number of a graph , 2014, Discret. Appl. Math..

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  C. Berge Fractional Graph Theory , 1978 .

[12]  Vittorio Giovannetti,et al.  Full control by locally induced relaxation. , 2007, Physical review letters.

[13]  Joyati Debnath,et al.  Minimum rank of skew-symmetric matrices described by a graph , 2010 .

[14]  Travis Peters,et al.  Positive semidefinite maximum nullity and zero forcing number , 2012 .

[15]  Sarah Meyer,et al.  Propagation time for zero forcing on a graph , 2012, Discret. Appl. Math..

[16]  Pauline van den Driessche,et al.  Parameters Related to Tree‐Width, Zero Forcing, and Maximum Nullity of a Graph , 2013, J. Graph Theory.