Total synthesis of platensimycin and related natural products.

Platensimycin is the flagship member of a new and growing class of antibiotics with promising antibacterial properties against drug-resistant bacteria. The total syntheses of platensimycin and its congeners, platensimycins B(1) and B(3), platensic acid, methyl platensinoate, platensimide A, homoplatensimide A, and homoplatensimide A methyl ester, are described. The convergent strategy developed toward these target molecules involved construction of their cage-like core followed by attachment of the various side chains through amide bond formation. In addition to a racemic synthesis, two asymmetric routes to the core structure are described: one exploiting a rhodium-catalyzed asymmetric cycloisomerization, and another employing a hypervalent iodine-mediated de-aromatizing cyclization of an enantiopure substrate. The final two bonds of the core structure were forged through a samarium diiodide-mediated ketyl radical cyclization and an acid-catalyzed etherification. The rhodium-catalyzed asymmetric reaction involving a terminal acetylene was developed as a general method for the asymmetric cycloisomerization of terminal enynes.

[1]  K. Nicolaou,et al.  Samarium diiodide mediated reactions in total synthesis. , 2009, Angewandte Chemie.

[2]  Heonjoong Kang,et al.  Isoplatensimycin: Synthesis and biological evaluation. , 2009, Bioorganic & medicinal chemistry letters.

[3]  K. Nicolaou,et al.  Rhodium-catalyzed asymmetric enyne cycloisomerization of terminal alkynes and formal total synthesis of (-)-platensimycin. , 2009, Angewandte Chemie.

[4]  C. Sabot,et al.  Concise total synthesis of (+/-)-aspidospermidine via an oxidative Hosomi-Sakurai process. , 2009, Chemical communications.

[5]  Daesung Lee,et al.  Stereoelectronic effect for the selectivity in C-H insertion of alkylidene carbenes and its application to the synthesis of platensimycin. , 2009, Journal of the American Chemical Society.

[6]  M. L. Hyaric,et al.  The Barton ester free-radical reaction : a brief review of applications , 2009 .

[7]  M. Maccoss,et al.  Synthesis and biological evaluation of platensimycin analogs. , 2009, Bioorganic & medicinal chemistry letters.

[8]  V. Lee,et al.  Efforts towards the identification of simpler platensimycin analogues--the total synthesis of oxazinidinyl platensimycin. , 2009, Chemistry.

[9]  B. Staels,et al.  Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens , 2009, Nature.

[10]  Arun K. Ghosh,et al.  Total synthesis of (-)-platensimycin, a novel antibacterial agent. , 2009, The Journal of organic chemistry.

[11]  K. Nicolaou,et al.  Recent advances in the chemistry and biology of naturally occurring antibiotics. , 2009, Angewandte Chemie.

[12]  A. Demain,et al.  Microbial drug discovery: 80 years of progress , 2009, The Journal of Antibiotics.

[13]  J. Wang,et al.  Isolation, structure and fatty acid synthesis inhibitory activities of platensimycin B1-B3 from Streptomyces platensis. , 2008, Chemical communications.

[14]  A. Stepan,et al.  Design, synthesis, and biological evaluation of platensimycin analogues with varying degrees of molecular complexity. , 2008, Journal of the American Chemical Society.

[15]  H. Ishibashi,et al.  Stereocontrolled formal synthesis of (+/-)-platensimycin. , 2008, Organic letters.

[16]  C. Sabot,et al.  Intriguing formal [2+3] cycloaddition promoted by a hypervalent iodine reagent , 2008 .

[17]  E. Corey,et al.  A simple, efficient, and enantiocontrolled synthesis of a near-structural mimic of platensimycin. , 2008, Organic letters.

[18]  Sheo B. Singh,et al.  Structure of homoplatensimide A : a potential key biosynthetic intermediate of platensimycin isolated from Streptomyces platensis , 2008 .

[19]  Y. Chung,et al.  A carbonyl ylide cycloaddition approach to platensimycin. , 2008, Angewandte Chemie.

[20]  Sheo B. Singh,et al.  Structure and semisynthesis of platensimide A, produced by Streptomyces platensis. , 2008, Organic letters.

[21]  J. Mulzer,et al.  Synthesis of platensimycin. , 2008, Angewandte Chemie.

[22]  K. Y. Tsang,et al.  A chiral pool based synthesis of platensimycin. , 2008, Angewandte Chemie.

[23]  A. Attygalle,et al.  Biosynthetic studies of platensimycin. , 2007, Journal of the American Chemical Society.

[24]  Alexandre Jean,et al.  Novel formal [2+3] cycloaddition between substituted phenols and furan , 2007 .

[25]  A. Stepan,et al.  Total synthesis and antibacterial properties of carbaplatensimycin. , 2007, Journal of the American Chemical Society.

[26]  D. Enders,et al.  Organocatalysis by N-heterocyclic carbenes. , 2007, Chemical reviews.

[27]  J. Mulzer,et al.  Protecting-group-free formal synthesis of platensimycin. , 2007, Angewandte Chemie.

[28]  Fei Liu,et al.  Rh-catalyzed highly enantioselective formation of functionalized cyclopentanes and cyclopentanones. , 2007, Organic & biomolecular chemistry.

[29]  E. Corey,et al.  An effective enantioselective route to the platensimycin core. , 2007, Organic letters.

[30]  Hisashi Yamamoto,et al.  Enantioselective route to platensimycin: an intramolecular Robinson annulation approach. , 2007, Journal of the American Chemical Society.

[31]  R. Ball,et al.  Chemistry of platensimycin , 2007 .

[32]  K. Nicolaou,et al.  Adamantaplatensimycin: a bioactive analogue of platensimycin. , 2007, Angewandte Chemie.

[33]  F. Vicente,et al.  Isolation and structure of platencin: a FabH and FabF dual inhibitor with potent broad-spectrum antibiotic activity. , 2007, Angewandte Chemie.

[34]  K. Nicolaou,et al.  Asymmetric total syntheses of platensimycin. , 2007, Angewandte Chemie.

[35]  K. Nicolaou,et al.  Formal synthesis of (+/-)-platensimycin. , 2007, Chemical communications.

[36]  Jun Wang,et al.  Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties , 2007, Proceedings of the National Academy of Sciences.

[37]  B. Foxman,et al.  Formal synthesis of (+/-)-platensimycin. , 2007, Organic letters.

[38]  K. Nicolaou,et al.  Total synthesis of platensimycin. , 2006, Angewandte Chemie.

[39]  T. Honda,et al.  The first total synthesis of (±)-annosqualine by means of oxidative enamide–phenol coupling: pronounced effect of phenoxide formation on the phenol oxidation mechanism , 2006 .

[40]  Franz von Nussbaum,et al.  Platensimycin, a new antibiotic and "superbug challenger" from nature. , 2006 .

[41]  Olga Genilloud,et al.  Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy. , 2006, Journal of the American Chemical Society.

[42]  Stefan Weigand,et al.  Antibacterial natural products in medicinal chemistry--exodus or revival? , 2006, Angewandte Chemie.

[43]  Jun Wang,et al.  Platensimycin is a selective FabF inhibitor with potent antibiotic properties , 2006, Nature.

[44]  Jaehong Lim,et al.  Asymmetric catalysis of the [5 + 2] cycloaddition reaction of vinylcyclopropanes and pi-systems. , 2006, Journal of the American Chemical Society.

[45]  Sheo B Singh,et al.  Empirical antibacterial drug discovery--foundation in natural products. , 2006, Biochemical pharmacology.

[46]  Jun Wang,et al.  Discovery of FabH/FabF Inhibitors from Natural Products , 2006, Antimicrobial Agents and Chemotherapy.

[47]  T. Honda,et al.  Novel and efficient synthetic path to proaporphine alkaloids: total synthesis of (+/-)-stepharine and (+/-)-pronuciferine. , 2006, Organic letters.

[48]  S. Castle,et al.  Advances in radical conjugate additions , 2005 .

[49]  Y. Hayashi,et al.  Cysteine-derived organocatalyst in a highly enantioselective intramolecular Michael reaction. , 2005, Journal of the American Chemical Society.

[50]  B. Trost,et al.  Ruthenium-catalyzed reactions--a treasure trove of atom-economic transformations. , 2005, Angewandte Chemie.

[51]  T. Wirth Hypervalent iodine chemistry in synthesis: scope and new directions. , 2005, Angewandte Chemie.

[52]  C. Walsh,et al.  Introduction: antibiotic resistance. , 2005, Chemical Reviews.

[53]  S. Quideau,et al.  λ3-Iodane-mediated arenol dearomatization. Synthesis of five-membered ring-containing analogues of the aquayamycin ABC tricyclic unit and novel access to the apoptosis inducer menadione , 2005 .

[54]  J. Barrett,et al.  Antibiotics: where did we go wrong? , 2005, Drug discovery today.

[55]  Linda C Hsieh-Wilson,et al.  A 'molecular switchboard'--covalent modifications to proteins and their impact on transcription. , 2004, Organic & biomolecular chemistry.

[56]  B. Trost,et al.  Ruthenium-catalyzed enyne cycloisomerizations. Effect of allylic silyl ether on regioselectivity. , 2004, Journal of the American Chemical Society.

[57]  D. Procter,et al.  Samarium(II)-iodide-mediated cyclizations in natural product synthesis. , 2004, Chemical reviews.

[58]  Y. Hamashima,et al.  Total synthesis of (-)-galanthamine by remote asymmetric induction. , 2004, Angewandte Chemie.

[59]  H. Kagan Twenty-five years of organic chemistry with diiodosamarium: an overview , 2003 .

[60]  C. Walsh Opinion — anti-infectives: Where will new antibiotics come from? , 2003, Nature Reviews Microbiology.

[61]  Xumu Zhang,et al.  Rh-catalyzed kinetic resolution of enynes and highly enantioselective formation of 4-alkenyl-2,3-disubstituted tetrahydrofurans. , 2003, Journal of the American Chemical Society.

[62]  Y. Kita,et al.  The first total synthesis of discorhabdin A. , 2003, Journal of the American Chemical Society.

[63]  R. Grubbs,et al.  Synthesis of functionalized vinyl boronates via ruthenium-catalyzed olefin cross-metathesis and subsequent conversion to vinyl halides. , 2003, The Journal of organic chemistry.

[64]  R. Grubbs,et al.  Synthesis and activity of ruthenium alkylidene complexes coordinated with phosphine and N-heterocyclic carbene ligands. , 2003, Journal of the American Chemical Society.

[65]  Xumu Zhang,et al.  Highly enantioselective cycloisomerization of enynes catalyzed by rhodium for the preparation of functionalized lactams. , 2002, Angewandte Chemie.

[66]  Xumu Zhang,et al.  Highly enantioselective Rh-catalyzed intramolecular Alder-ene reactions for the syntheses of chiral tetrahydrofurans. , 2002, Angewandte Chemie.

[67]  H. Pearson 'Superbug' hurdles key drug barrier , 2002, Nature.

[68]  Xumu Zhang,et al.  Highly Enantioselective Syntheses of Functionalized α-Methylene-γ-butyrolactones via Rh(I)-catalyzed Intramolecular Alder Ene Reaction: Application to Formal Synthesis of (+)-Pilocarpine , 2002 .

[69]  P. Stang,et al.  Recent developments in the chemistry of polyvalent iodine compounds. , 2002, Chemical reviews.

[70]  Scott T. Harrison,et al.  Oxidation of silyl enol ethers by using IBX and IBX.N-oxide complexes: a mild and selective reaction for the synthesis of enones. , 2002, Angewandte Chemie.

[71]  S. Danishefsky,et al.  Application of hitherto unexplored macrocyclization strategies in the epothilone series: novel epothilone analogs by total synthesis. , 2002, Chemical communications.

[72]  S. Rychnovsky,et al.  Total Synthesis of Dermostatin A. , 2001, Angewandte Chemie.

[73]  Y. Hamashima,et al.  An efficient synthesis of (±)-narwedine and (±)-galanthamine by an improved phenolic oxidative coupling. , 2001, Angewandte Chemie.

[74]  S. Quideau,et al.  2-Alkoxyarenol-derived orthoquinols in carbon–oxygen, carbon–nitrogen and carbon–carbon bond-forming reactions , 2001 .

[75]  Xumu Zhang,et al.  The First Highly Enantioselective Rh‐Catalyzed Enyne Cycloisomerization , 2000 .

[76]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[77]  Xumu Zhang,et al.  Rh-Catalyzed Enyne Cycloisomerization , 2000 .

[78]  B. Trost,et al.  Ruthenium-Catalyzed Cycloisomerizations of 1,6- and 1,7-Enynes , 2000 .

[79]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[80]  J. P. Harrity,et al.  A Recyclable Ru-Based Metathesis Catalyst , 1999 .

[81]  S. Kobayashi Lanthanides: Chemistry and Use in Organic Synthesis , 1999 .

[82]  Y. Kita,et al.  Oxidative Intramolecular Phenolic Coupling Reaction Induced by a Hypervalent Iodine(III) Reagent: Leading to Galanthamine-Type Amaryllidaceae Alkaloids , 1998 .

[83]  G. Molander,et al.  Sequenced reactions with samarium(II) iodide , 1998 .

[84]  Andrew Kopecky,et al.  Pseudoephedrine as a Practical Chiral Auxiliary for the Synthesis of Highly Enantiomerically Enriched Carboxylic Acids, Alcohols, Aldehydes, and Ketones , 1997 .

[85]  J. L. Gleason,et al.  Highly Practical Methodology for the Synthesis of d- and l-α-Amino Acids, N-Protected α-Amino Acids, and N-Methyl-α-amino Acids , 1997 .

[86]  G. Hessler,et al.  C‐Glycoside Analogues of N4‐(2‐Acetamido‐2‐deoxy‐β‐D‐glucopyranosyl)‐L‐asparagine: Synthesis and conformational analysis of a cyclic C‐glycopeptide , 1996 .

[87]  P. Stang,et al.  Organic Polyvalent Iodine Compounds. , 1996, Chemical reviews.

[88]  J. Rohde,et al.  Intramolecular Anodic Carbon−Carbon Bond Formation from Oxidized Phenol Intermediates. Effect of Oxygenated Substituents on the Yields of Spiro Dienones in Electrochemical and Iodobenzene Diacetate Oxidations , 1996 .

[89]  G. Molander,et al.  Sequencing Reactions with Samarium(II) Iodide. , 1996, Chemical reviews.

[90]  J. L. Gleason,et al.  Practical method for the synthesis of D- or L-.alpha.-amino acids by the alkylation of (+)- or (-)-pseudoephedrine glycinamide. , 1995 .

[91]  M. Sabat,et al.  Potential Photoaffinity Labels for Tubulin. Synthesis and Evaluation of Diazocyclohexadienone and Azide Analogs of Colchicine, Combretastatin, and 3,4,5-Trimethoxybiphenyl , 1994 .

[92]  S. Rychnovsky,et al.  Convergent Synthesis of the Polyene Macrolide (-)-Roxaticin , 1994 .

[93]  G. Molander Application of lanthanide reagents in organic synthesis , 1992 .

[94]  Y. Kita,et al.  Total synthesis of discorhabdin C : a general aza spiro dienone formation from O-silylated phenol derivatives using a hypervalent iodine reagent , 1992 .

[95]  Y. Kita,et al.  A synthetic approach to discorhabdin alkaloids: Hypervalent iodine oxidation of -substituted phenol derivatives to azacarbocyclic spirodienones , 1989 .

[96]  D. Barton,et al.  New and improved methods for the radical decarboxylation of acids , 1983 .

[97]  John C. Sheehan,et al.  The Enchanted Ring: The Untold Story of Penicillin , 1986 .

[98]  K. Shea,et al.  SYNTHESIS AND CHEMISTRY OF A BRIDGEHEAD ENOL LACTONE , 1982 .

[99]  D. W. Johnson,et al.  Studies on intramolecular alkylation. XIV. The preparation of methoxylated cyclohexadienone derivatives from intramolecular diazoketone cyclizations inrelationship to isoquinoline alkaloid synthesis , 1981 .

[100]  W. Childers,et al.  Oxidation of α,β-un saturated aldehydes , 1981 .

[101]  T. Saegusa,et al.  Synthesis of .alpha.,.beta.-unsaturated carbonyl compounds by palladium(II)-catalyzed dehydrosilylation of silyl enol ethers , 1978 .

[102]  K. Nicolaou,et al.  Phenylselenolactonization. An extremely mild and synthetically useful cyclization process , 1977 .

[103]  K. Nicolaou,et al.  The use of PhSeCl in the synthesis of cyclic ethers , 1977 .

[104]  G. Kabalka,et al.  Mild and convenient oxidation procedure for the conversion of organoboranes to the corresponding alcohols , 1975 .

[105]  L. Mander,et al.  Studies on intramolecular alkylation. IV. The preparation of spirodienones from phenolic diazoketones , 1974 .

[106]  R. Danheiser,et al.  Regiospecific alkylation of cyclic .beta.-diketone enol ethers. General synthesis of 4-alkylcyclohexenones , 1973 .

[107]  S. Winstein,et al.  THE FORMATION OF DIENONES THROUGH AR1-PARTICIPATION , 1957 .