Foundations of quantum theory and quantum information applications

This thesis establishes a number of connections between foundational issues in quantum theory, and some quantum information applications. It starts with a review of quantum contextuality and non-locality, multipartite entanglement characterisation, and of a few quantum information protocols. Quantum non-locality and contextuality are shown to be essential for different implementations of quantum information protocols known as quantum random access codes and quantum communication complexity protocols. I derive sufficient experimental conditions for tests of these quantum properties. I also discuss how the distribution of quantum information through quantum cloning processes can be useful in quantum computing. Regarding entanglement characterisation, some results are obtained relating two problems, that of additivity of the relative entropy of entanglement, and that of identifying different types of tripartite entanglement in the asymptotic regime of manipulations of many copies of a given state. The thesis ends with a description of an information processing task in which a single qubit substitutes for an arbitrarily large amount of classical communication. This result is interpreted in different ways: as a gap between quantum and classical computation space complexity; as a bound on the amount of classical communication necessary to simulate entanglement; and as a basic result on hidden-variable theories for quantum mechanics. I also show that the advantage of quantum over classical communication can be established in a feasible experiment.

[1]  G. Guo,et al.  Probabilistic Cloning and Identification of Linearly Independent Quantum States , 1998, quant-ph/9804064.

[2]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[3]  Zeilinger,et al.  Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits , 2000, Physical review letters.

[4]  L. Hardy,et al.  Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. , 1992, Physical review letters.

[5]  V. Vedral On bound entanglement assisted distillation , 1999, quant-ph/9908047.

[6]  M. Hillery,et al.  Quantum copying: A network , 1997 .

[7]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[8]  K Banaszek Fidelity balance in quantum operations. , 2001, Physical review letters.

[9]  M. Donald On the relative entropy , 1986 .

[10]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[11]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[12]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[13]  G. Vidal,et al.  LOCAL DESCRIPTION OF QUANTUM INSEPARABILITY , 1998 .

[14]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[15]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[16]  M. B. Plenio,et al.  Tripartite entanglement and quantum relative entropy , 2000 .

[17]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[18]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[19]  Nonextensive approach to decoherence in quantum mechanics , 2000, quant-ph/0002071.

[20]  S. Popescu,et al.  Generic quantum nonlocality , 1992 .

[21]  M. Murao,et al.  Remote information concentration using a bound entangled state. , 2000, Physical review letters.

[22]  A. Wehrl General properties of entropy , 1978 .

[23]  A. Peres Incompatible results of quantum measurements , 1990 .

[24]  W. Dür Multipartite bound entangled states that violate Bell's inequality. , 2001, Physical review letters.

[25]  Oliver Rudolph A separability criterion for density operators , 2000, quant-ph/0002026.

[26]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[28]  Asher Peres Bayesian Analysis of Bell Inequalities , 2000 .

[29]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[30]  U. Vazirani On the power of quantum computation , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[32]  Michele Mosca,et al.  Approximate quantum cloning with nuclear magnetic resonance. , 2002, Physical review letters.

[33]  Christian Kurtsiefer,et al.  High efficiency entangled photon pair collection in type II parametric fluorescence , 2001, quant-ph/0101074.

[34]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[35]  Exact uncertainty relations , 2001, quant-ph/0107149.

[36]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[37]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[38]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[39]  Minimal absorption measurements , 2001, quant-ph/0102116.

[40]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[41]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[42]  Weinfurter,et al.  Experiments towards falsification of noncontextual hidden variable theories , 2000, Physical review letters.

[43]  Acacio De Barros J,et al.  Inequalities for dealing with detector inefficiencies in greenberger-horne-zeilinger-type experiments , 2000, Physical review letters.

[45]  Garg,et al.  Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. , 1987, Physical review. D, Particles and fields.

[46]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[47]  Ju-Seog Jang OPTICAL INTERACTION-FREE MEASUREMENT OF SEMITRANSPARENT OBJECTS , 1999 .

[48]  A Acín Distillability, bell inequalities, and multiparticle bound entanglement. , 2002, Physical review letters.

[49]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[50]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[51]  E. Lubkin Entropy of an n‐system from its correlation with a k‐reservoir , 1978 .

[52]  Caslav Brukner,et al.  Young's experiment and the finiteness of information , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  Lucien Hardy,et al.  Building multiparticle states with teleportation , 2000 .

[54]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[55]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[56]  Guang-Can Guo,et al.  W state and Greenberger–Horne–Zeilinger state in quantum three-person prisoner's dilemma , 2002 .

[57]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[58]  Stephen M. Barnett,et al.  Strategies and networks for state-dependent quantum cloning , 1999 .

[59]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[60]  Lev Vaidman,et al.  Tests of Bell inequalities , 2001, quant-ph/0107057.

[61]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[62]  C. Tsallis,et al.  Peres criterion for separability through nonextensive entropy , 2001 .

[63]  K. Audenaert,et al.  Asymptotic relative entropy of entanglement. , 2001, Physical review letters.

[64]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[66]  Mark Hillery,et al.  Universal Optimal Cloning of Qubits and Quantum Registers , 1998, QCQC.

[67]  A. Gleason Measures on the Closed Subspaces of a Hilbert Space , 1957 .

[68]  J. Latorre,et al.  Quantum nonlocality in two three-level systems , 2001, quant-ph/0111143.

[69]  L. Broglie An introduction to the study of wave mechanics , 1930 .

[70]  G. Vidal On the characterization of entanglement , 1998 .

[71]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[72]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[73]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[74]  Lucien Hardy,et al.  Cloning and quantum computation , 2000 .

[75]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[76]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[77]  Dave Bacon,et al.  Classical simulation of quantum entanglement without local hidden variables , 2001 .

[78]  Caslav Brukner,et al.  OPERATIONALLY INVARIANT INFORMATION IN QUANTUM MEASUREMENTS , 1999 .

[79]  F. Martini,et al.  Schroedinger cat states and optimum universal quantum cloning by entangled parametric amplification , 2000 .

[80]  M. Donald Further results on the relative entropy , 1987, Mathematical Proceedings of the Cambridge Philosophical Society.

[81]  S Popescu,et al.  Multi-particle entanglement , 1998 .

[82]  Jan-Åke Larsson Bell’s inequality and detector inefficiency , 1998 .

[83]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[84]  Adan Cabello,et al.  Proposed Experimental Tests of the Bell-Kochen-Specker Theorem , 1998 .

[85]  C. Macchiavello,et al.  Optimal state estimation for d-dimensional quantum systems☆ , 1998, quant-ph/9812016.

[86]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[87]  M. Plenio,et al.  MINIMAL CONDITIONS FOR LOCAL PURE-STATE ENTANGLEMENT MANIPULATION , 1999, quant-ph/9903054.

[88]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[89]  Basil J. Hiley,et al.  Quantum interference and the quantum potential , 1979 .

[90]  S. Massar,et al.  Bell inequalities for arbitrarily high-dimensional systems. , 2001, Physical review letters.

[91]  Adi Shamir,et al.  Analysis and Optimization of the TWINKLE Factoring Device , 2000, EUROCRYPT.

[92]  J I Cirac,et al.  Reversible combination of inequivalent kinds of multipartite entanglement. , 2000, Physical review letters.

[93]  Andris Ambainis,et al.  Dense quantum coding and a lower bound for 1-way quantum automata , 1998, STOC '99.

[94]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[95]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[96]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[97]  Marlan O Scully,et al.  Quantum afterburner: improving the efficiency of an ideal heat engine. , 2002, Physical review letters.

[98]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[99]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[100]  D. Bruss,et al.  Separability and distillability in composite quantum systems-a primer , 2000 .

[101]  H. Wiseman,et al.  Read-only-memory-based quantum computation: Experimental explorations using nuclear magnetic resonance and future prospects , 2001, quant-ph/0112127.

[102]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[103]  D. Bouwmeester,et al.  Experimental Quantum Cloning of Single Photons , 2002, Science.

[104]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[105]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[106]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[107]  W. Munro,et al.  Upper bound on the region of separable states near the maximally mixed state , 2000, quant-ph/0002002.

[108]  Cerf,et al.  Classical teleportation of a quantum Bit , 2000, Physical review letters.

[109]  E. Kashefi,et al.  Uniqueness of the entanglement measure for bipartite pure states and thermodynamics. , 2002, Physical review letters.

[110]  J. Cirac,et al.  Irreversibility in asymptotic manipulations of a distillable entangled state , 2001 .

[111]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[112]  Adi Shamir,et al.  Factoring Numbers in O(log n) Arithmetic Steps , 1979, Inf. Process. Lett..

[113]  Quantum communication using a nonlocal Zeno effect , 1999 .

[114]  Paul G. Kwiat Experimental and theoretical progress in interaction-free measurements , 1998 .

[115]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[116]  L. Hardy METHOD OF AREAS FOR MANIPULATING THE ENTANGLEMENT PROPERTIES OF ONE COPY OF A TWO-PARTICLE PURE ENTANGLED STATE , 1999, quant-ph/9903001.

[117]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[118]  G. Vidal,et al.  Approximate transformations and robust manipulation of bipartite pure-state entanglement , 1999, quant-ph/9910099.

[119]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[120]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[121]  Zeilinger,et al.  Optimal quantum cloning via stimulated emission , 2000, Physical review letters.

[122]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[123]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[124]  Igor Devetak,et al.  Fidelity trade-off for finite ensembles of identically prepared qubits , 2001 .

[125]  G. M. D'Ariano,et al.  Joint measurements via quantum cloning , 2000, quant-ph/0007062.

[126]  Slovakia,et al.  Entangled webs: Tight bound for symmetric sharing of entanglement , 2000, quant-ph/0007086.

[127]  Laszlo E. Szabo,et al.  A local hidden variable theory for the GHZ experiment , 2002 .

[128]  I. N. Sanov On the probability of large deviations of random variables , 1958 .

[129]  S. Massar Nonlocality, closing the detection loophole, and communication complexity , 2001, quant-ph/0109008.

[130]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[131]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[132]  E. Rains Bound on distillable entanglement , 1998, quant-ph/9809082.

[133]  Weinfurter,et al.  Feasible "Kochen-Specker" experiment with single particles , 2000, Physical review letters.

[134]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[135]  B. Dickinson,et al.  The complexity of analog computation , 1986 .

[136]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[137]  Shengjun Wu,et al.  Multipartite pure-state entanglement and the generalized Greenberger-Horne-Zeilinger states , 2000 .

[138]  P. Holland The Quantum Theory of Motion , 1993 .

[139]  Stephan Dürr,et al.  Quantitative wave-particle duality in multibeam interferometers , 2001 .

[140]  A. Cabello N-particle N-level singlet States: some properties and applications. , 2002, Physical review letters.

[141]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[142]  Andris Ambainis,et al.  ROM-based computation: quantum versus classical , 2002, Quantum Inf. Comput..

[143]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[144]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[145]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[146]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[147]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[148]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[149]  Adi Shamir Factoring Large Numbers with the Twinkle Device (Extended Abstract) , 1999, CHES.

[150]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[151]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[152]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[153]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[154]  Alfréd Rényi Wahrscheinlichkeitsrechnung : mit einem Anhang über Informationstheorie , 1979 .

[155]  A. Zeilinger,et al.  Conceptual inadequacy of the Shannon information in quantum measurements , 2000, quant-ph/0006087.

[156]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[157]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[158]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[159]  N. Mermin What's Wrong with these Elements of Reality? , 1990 .

[160]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[161]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[162]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.