Differential evolution techniques for the structure-control design of a five-bar parallel robot

The present work deals with the use of a constraint-handling differential evolution algorithm to solve a nonlinear dynamic optimization problem (NLDOP) with 51 decision variables. A novel mechatronic design approach is proposed as an NLDOP, where both the structural parameters of a non-redundant parallel robot and the control parameters are simultaneously designed with respect to a performance criterion. Additionally, the dynamic model of the parallel robot is included in the NLDOP as an equality constraint. The obtained solution will be a set of optimal geometric parameters and optimal PID control gains. The optimal geometric parameters adjust the dynamic and the kinematic parameters, optimizing then, the link shapes of the robot. The proposed mechatronic design approach is applied to design simultaneously both the mechanical structure of a five-bar parallel robot and the PID controller.

[1]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[2]  René V. Mayorga,et al.  A manipulator performance index based on the Jacobian rate of change: a motion planning analysis , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[3]  K. H. Hunt,et al.  Structural Kinematics of In-Parallel-Actuated Robot-Arms , 1983 .

[4]  Wen-Jun Zhang,et al.  Integrated design of robotic mechanisms for force balancing and trajectory tracking , 2003 .

[5]  Fathi H. Ghorbel,et al.  Modeling and set point control of closed-chain mechanisms: theory and experiment , 2000, IEEE Trans. Control. Syst. Technol..

[6]  R. Saravanan,et al.  Evolutionary Minimum Cost Trajectory Planning for Industrial Robots , 2008, J. Intell. Robotic Syst..

[7]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[8]  P. Shiakolas,et al.  On the Optimum Synthesis of Six-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions Technique , 2003 .

[9]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[10]  Kalyanmoy Deb,et al.  Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms , 2003 .

[11]  J. Kim,et al.  Task based kinematic design of a two DOF manipulator with a parallelogram five-bar link mechanism , 2006 .

[12]  Edgar Alfredo Portilla-Flores,et al.  Integration of structure and control using an evolutionary approach: an application to the optimal concurrent design of a CVT , 2007 .

[13]  Jinsong Wang,et al.  Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms , 2006 .

[14]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[15]  Charles A. Klein,et al.  Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators , 1987 .

[16]  Miguel G. Villarreal-Cervantes,et al.  Concurrent redesign of an underactuated robot manipulator , 2009 .

[17]  Carlos A. Coello Coello,et al.  Simple Feasibility Rules and Differential Evolution for Constrained Optimization , 2004, MICAI.

[18]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[19]  Nader Sadegh,et al.  Minimum Time Trajectory Optimization and Learning , 1999 .

[20]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[21]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[22]  Long Chen,et al.  Design for control: A concurrent engineering approach for mechatronic systems design , 2001 .

[23]  L. W. Tsai,et al.  Robot Analysis: The Mechanics of Serial and Parallel Ma-nipulators , 1999 .

[24]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[25]  Zouhaier Affi,et al.  Advanced mechatronic design using a multi-objective genetic algorithm optimization of a motor-driven four-bar system , 2007 .

[26]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[27]  Kamal Youcef-Toumi,et al.  Modeling, design, and control integration: a necessary step in mechatronics , 1996 .

[28]  Edgar Alfredo Portilla-Flores,et al.  Evolutionary Dynamic Optimization of a Continuously Variable Transmission for Mechanical Efficiency Maximization , 2005, MICAI.

[29]  Panos S. Shiakolas,et al.  On the Optimum Synthesis of Six-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions Technique , 2005 .

[30]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[31]  Kwun-Lon Ting,et al.  Five-Bar Grashof Criteria , 1986 .

[32]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..