Characterizations of the Kar and Folk solutions for Minimum Cost Spanning Tree Problems

A review of the literature on cost sharing solutions for the minimum cost spanning tree problem is proposed, with a particular focus on the folk and Kar solutions. We compare the characterizations proposed, helped by some equivalencies between sets of properties.

[1]  Christian Trudeau Network flow problems and permutationally concave games , 2009, Math. Soc. Sci..

[2]  Christian Trudeau,et al.  A new stable and more responsive cost sharing solution for minimum cost spanning tree problems , 2012, Games Econ. Behav..

[3]  Stef Tijs,et al.  Connection situations under uncertainty and cost monotonic solutions , 2011, Comput. Oper. Res..

[4]  Daniel J. Kleitman,et al.  Cost allocation for a spanning tree , 1973, Networks.

[5]  Daniel Granot,et al.  On the core and nucleolus of minimum cost spanning tree games , 1984, Math. Program..

[6]  Juan J. Vidal-Puga,et al.  Merge-proofness in minimum cost spanning tree problems , 2011, Int. J. Game Theory.

[7]  Jens Leth Hougaard,et al.  Decentralized pricing in minimum cost spanning trees , 2008 .

[8]  Jens Leth Hougaard,et al.  Truth-telling and Nash equilibria in minimum cost spanning tree models , 2012, Eur. J. Oper. Res..

[9]  Ron Holzman,et al.  Sharing the Cost of a Capacity Network , 2010, Math. Oper. Res..

[10]  Gustavo Bergantiños,et al.  Additivity in minimum cost spanning tree problems , 2009 .

[11]  Gustavo Bergantiños,et al.  A fair rule in minimum cost spanning tree problems , 2007, J. Econ. Theory.

[12]  Gustavo Bergantiños,et al.  The family of cost monotonic and cost additive rules in minimum cost spanning tree problems , 2010, Soc. Choice Welf..

[13]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[14]  Silvia Lorenzo-Freire,et al.  A characterization of Kruskal sharing rules for minimum cost spanning tree problems , 2009, Int. J. Game Theory.

[15]  Christian Trudeau Linking the Kar and folk solutions through a problem separation property , 2014, Int. J. Game Theory.

[16]  Theo S. H. Driessen,et al.  The irreducible Core of a minimum cost spanning tree game , 1993, ZOR Methods Model. Oper. Res..

[17]  G. Bergantiños,et al.  On some properties of cost allocation rules in minimum cost spanning tree problems , 2008 .

[18]  L. Shapley,et al.  PURE COMPETITION, COALITIONAL POWER, AND FAIR DIVISION* , 1969 .

[19]  Daniel Granot,et al.  Minimum cost spanning tree games , 1981, Math. Program..

[20]  Gustavo Bergantiños,et al.  An axiomatic approach in minimum cost spanning tree problems with groups , 2015, Ann. Oper. Res..

[21]  Henk Norde,et al.  Minimum cost spanning tree games and population monotonic allocation schemes , 2004, Eur. J. Oper. Res..

[22]  Gustavo Bergantiños,et al.  A generalization of obligation rules for minimum cost spanning tree problems , 2011, Eur. J. Oper. Res..

[23]  Daniel Granot,et al.  The Relationship Between Convex Games and Minimum Cost Spanning Tree Games: A Case for Permutationally Convex Games , 1982 .

[24]  Anirban Kar,et al.  Cost monotonicity, consistency and minimum cost spanning tree games , 2004, Games Econ. Behav..

[25]  Vincent Feltkamp,et al.  On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems , 1994 .

[26]  Hervé Moulin,et al.  Sharing a minimal cost spanning tree: Beyond the Folk solution , 2010, Games Econ. Behav..

[27]  C. G. Bird,et al.  On cost allocation for a spanning tree: A game theoretic approach , 1976, Networks.

[28]  Juan José Vidal Puga,et al.  Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms , 2007 .

[29]  Gustavo Bergantiños,et al.  A Value for PERT Problems , 2009, IGTR.

[30]  Peter Borm,et al.  Congestion Network Problems and Related Games , 2003 .

[31]  Gustavo Bergantiños,et al.  On obligation rules for minimum cost spanning tree problems , 2010, BQGT.

[32]  R. Prim Shortest connection networks and some generalizations , 1957 .

[33]  Gustavo Bergantiños,et al.  The optimistic TU game in minimum cost spanning tree problems , 2007, Int. J. Game Theory.

[34]  Anirban Kar,et al.  Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games , 2002, Games Econ. Behav..

[35]  Christian Trudeau,et al.  Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems , 2014, Soc. Choice Welf..

[36]  Debasis Mishra,et al.  Minimum cost arborescences , 2012, Games Econ. Behav..

[37]  Gustavo Bergantiños,et al.  Minimum cost spanning tree problems with groups , 2010 .