An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit large eddy simulations

Abstract We present an implicit Large Eddy Simulation (iLES) h / p high order (≥2) unstructured Discontinuous Galerkin–Fourier solver with sliding meshes. The solver extends the laminar version of Ferrer and Willden, 2012 [34] , to enable the simulation of turbulent flows at moderately high Reynolds numbers in the incompressible regime. This solver allows accurate flow solutions of the laminar and turbulent 3D incompressible Navier–Stokes equations on moving and static regions coupled through a high order sliding interface. The spatial discretisation is provided by the Symmetric Interior Penalty Discontinuous Galerkin (IP-DG) method in the x – y plane coupled with a purely spectral method that uses Fourier series and allows efficient computation of spanwise periodic three-dimensional flows. Since high order methods (e.g. discontinuous Galerkin and Fourier) are unable to provide enough numerical dissipation to enable under-resolved high Reynolds computations (i.e. as necessary in the iLES approach), we adapt the laminar version of the solver to increase (controllably) the dissipation and enhance the stability in under-resolved simulations. The novel stabilisation relies on increasing the penalty parameter included in the DG interior penalty (IP) formulation. The latter penalty term is included when discretising the linear viscous terms in the incompressible Navier–Stokes equations. These viscous penalty fluxes substitute the stabilising effect of non-linear fluxes, which has been the main trend in implicit LES discontinuous Galerkin approaches. The IP-DG penalty term provides energy dissipation, which is controlled by the numerical jumps at element interfaces (e.g. large in under-resolved regions) such as to stabilise under-resolved high Reynolds number flows. This dissipative term has minimal impact in well resolved regions and its implicit treatment does not restrict the use of large time steps, thus providing an efficient stabilization mechanism for iLES. The IP-DG stabilisation is complemented with a Spectral Vanishing Viscosity (SVV) method, in the z -direction, to enhance stability in the continuous Fourier space. The coupling between the numerical viscosity in the DG plane and the SVV damping, provides an efficient approach to stabilise high order methods at moderately high Reynolds numbers. We validate the formulation for three turbulent flow cases: a circular cylinder at Re = 3900 , a static and pitch oscillating NACA 0012 airfoil at Re = 10000 and finally a rotating vertical-axis turbine at Re = 40000 , with Reynolds based on the circular diameter, airfoil chord and turbine diameter, respectively. All our results compare favourably with published direct numerical simulations, large eddy simulations or experimental data. We conclude that the DG-Fourier high order solver, with IP-SVV stabilisation, proves to be a valuable tool to predict turbulent flows and associated statistics for both static and rotating machinery.

[1]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[2]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[3]  Hongxing Yang,et al.  Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers , 2014 .

[4]  Alessandro Colombo,et al.  On the development of an implicit high-order Discontinuous Galerkin method for DNS and implicit LES of turbulent flows , 2016 .

[5]  Esteban Ferrer,et al.  A high order Discontinuous Galerkin Finite Element solver for the incompressible Navier-Stokes equations , 2011 .

[6]  Ning Qin,et al.  Wind tunnel and numerical study of a small vertical axis wind turbine , 2008 .

[7]  Spencer J. Sherwin,et al.  Dispersion Analysis of the Continuous and Discontinuous Galerkin Formulations , 2000 .

[8]  R. Temam Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .

[9]  Esteban Ferrer,et al.  Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation , 2016, J. Comput. Phys..

[10]  Jörg Franke,et al.  Large eddy simulation of the flow past a circular cylinder at ReD=3900 , 2002 .

[11]  J. Strickland,et al.  Dynamic-stall regulation of the Darrieus turbine , 1983 .

[12]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[13]  George Em Karniadakis,et al.  Parallel spectral-element—Fourier simulation of turbulent flow over riblet-mounted surfaces , 1992 .

[14]  Kamaruzzaman Sopian,et al.  Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations , 2015 .

[15]  W. Rodi,et al.  Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids , 2004 .

[16]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[17]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[19]  C. Norberg Fluctuating lift on a circular cylinder: review and new measurements , 2003 .

[20]  M. Oldfield,et al.  Application of linear momentum actuator disc theory to open channel flow , 2008 .

[21]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .

[22]  Alessandro Colombo,et al.  Implementation of an Explicit Algebraic Reynolds Stress Model in an Implicit Very High-Order Discontinuous Galerkin Solver , 2014 .

[23]  Per-Olof Persson,et al.  RANS Solutions Using High Order Discontinuous Galerkin Methods , 2007 .

[24]  Marco Luciano Savini,et al.  A high-order Discontinuous Galerkin solver for the incompressible RANS and k–ω turbulence model equations , 2014 .

[25]  Alessandro Colombo,et al.  A high-order Discontinuous Galerkin solver for unsteady incompressible turbulent flows , 2016 .

[26]  Richard H J Willden,et al.  Blockage effects on the hydrodynamic performance of a marine cross-flow turbine , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[28]  M. Zdravkovich Flow around circular cylinders , 2016 .

[29]  J. Fröhlich,et al.  Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids, II , 2001 .

[30]  Todd A. Oliver A High-Order, Adaptive, Discontinuous Galerkin Finite Element Method for the Reynolds-Averaged Navier-Stokes Equations , 2008 .

[31]  Spencer J. Sherwin,et al.  Dealiasing techniques for high-order spectral element methods on regular and irregular grids , 2015, J. Comput. Phys..

[32]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Hans Bernhoff,et al.  Analytical solutions for a single blade in vertical axis turbine motion in two dimensions , 2009 .

[35]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[36]  Nikolaus A. Adams,et al.  Assessment of Implicit Large-Eddy Simulation with a conservative immersed interface method for turbulent cylinder flow , 2010 .

[37]  Khosro Shahbazi,et al.  Short Note: An explicit expression for the penalty parameter of the interior penalty method , 2005 .

[38]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[39]  Ralf Hartmann,et al.  Adjoint-based error estimation and adaptive mesh refinement for the RANS and k-ω turbulence model equations , 2011, J. Comput. Phys..

[40]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[41]  T. A. Zang,et al.  On the rotation and skew-symmetric forms for incompressible flow simulations , 1991 .

[42]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[43]  Richard H. J. Willden A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes for simulating cross-flow turbines , 2012 .

[44]  Mats Leijon,et al.  Evaluation of different turbine concepts for wind power , 2008 .

[45]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[46]  Gregor Gassner An Analysis of the Dissipation and Dispersion Errors of the PNPM Schemes , 2013, J. Sci. Comput..

[47]  Samir Ziada,et al.  Computational fluid dynamics simulation of the aerodynamics of a high solidity, small‐scale vertical axis wind turbine , 2012 .

[48]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[49]  R. Mittal Large-eddy simulation of flow past a circular cylinder , 1995 .

[50]  Spencer J. Sherwin,et al.  Stability of Projection Methods for Incompressible Flows Using High Order Pressure-Velocity Pairs of Same Degree: Continuous and Discontinuous Galerkin Formulations , 2014 .

[51]  Xiaowei Deng,et al.  Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines , 2014 .

[52]  Gregory A. Blaisdell,et al.  The effect of the formulation of nonlinear terms on aliasing errors in spectral methods , 1996 .

[53]  Per-Olof Persson,et al.  Implicit Large Eddy Simulation of transition to turbulence at low Reynolds numbers using a Discontinuous Galerkin method , 2011 .

[54]  Valerio D'Alessandro,et al.  A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows , 2013, J. Comput. Phys..

[55]  Gonzalo Rubio,et al.  Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous Galerkin methods , 2016 .

[56]  PAUL CASTILLO,et al.  Performance of Discontinuous Galerkin Methods for Elliptic PDEs , 2002, SIAM J. Sci. Comput..

[57]  Hongxing Yang,et al.  Fluid forces on a very low Reynolds number airfoil and their prediction , 2011 .

[58]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[59]  Alain Dervieux,et al.  Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids , 2010 .

[60]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[61]  E. Ferrer,et al.  Flow Scales in Cross-Flow Turbines , 2015 .

[62]  Ewald Krämer,et al.  A parallel, high-order discontinuous Galerkin code for laminar and turbulent flows , 2008 .

[63]  Michael Bader,et al.  A High-Order , 2019 .

[64]  Laurent Gicquel,et al.  Multiscale and Multiresolution Approaches in TurbulenceP. Sagaut, S. Deck, and M. Terracol, 2nd ed., Imperial College Press, London, 2013, 448 pp., 128 hardcover and 96 ebook. , 2015 .

[65]  Guido Kanschat,et al.  An Equal-Order DG Method for the Incompressible Navier-Stokes Equations , 2009, J. Sci. Comput..

[66]  Marco Luciano Savini,et al.  Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations , 2005 .

[67]  Chalmers Tekniska Högskola EFFECTS OF REYNOLDS NUMBER AND A LOW-INTENSITY FREESTREAM TURBULENCE ON THE FLOW AROUND A CIRCULAR CYLINDER , 1987 .

[68]  G. Karniadakis Spectral element—Fourier methods for incompressible turbulent flows , 1990 .

[69]  Mazharul Islam,et al.  Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines , 2008 .

[70]  Per-Olof Persson,et al.  Validation of a High-Order Large-Eddy Simulation Solver Using a Vertical-Axis Wind Turbine , 2016 .

[71]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[72]  Spencer J. Sherwin,et al.  Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: Insights into spectral vanishing viscosity , 2016, J. Comput. Phys..

[73]  Antony Jameson,et al.  High-Order Flux Reconstruction Schemes with Minimal Dispersion and Dissipation , 2015, J. Sci. Comput..

[74]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[75]  Shigeru Sunada,et al.  Airfoil Section Characteristics at a Low Reynolds Number , 1997 .

[76]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[77]  Spencer J. Sherwin,et al.  Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods , 2015, J. Comput. Phys..

[78]  R. Pasquetti,et al.  Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters , 2005 .

[79]  J. Peiró,et al.  A free-surface and blockage correction for tidal turbines , 2009, Journal of Fluid Mechanics.

[80]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[81]  Hugh Maurice Blackburn,et al.  Spectral element filtering techniques for large eddy simulation with dynamic estimation , 2003 .

[82]  Spencer J. Sherwin,et al.  Aliasing errors due to quadratic nonlinearities on triangular spectral /hp element discretisations , 2007 .

[83]  L. Bricteux,et al.  Implicit LES of free and wall‐bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method , 2015 .

[84]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[85]  F. Bassi,et al.  High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations , 2013 .

[86]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[87]  Spencer J. Sherwin,et al.  Formulation of a Galerkin spectral element-fourier method for three-dimensional incompressible flows in cylindrical geometries , 2004 .

[88]  Andrea Crivellini,et al.  An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[89]  C. Ross Ethier,et al.  A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations , 2007, J. Comput. Phys..

[90]  Martin Kronbichler,et al.  A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow , 2016, J. Comput. Phys..

[91]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[92]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[93]  Gregor Gassner,et al.  Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations , 2016, J. Comput. Phys..

[94]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[95]  Esteban Ferrer,et al.  A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes , 2012, J. Comput. Phys..

[96]  R. Hartmann Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element methods , 2008 .

[97]  Ralf Hartmann,et al.  Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress transport model , 2014, J. Comput. Phys..

[98]  George E. Karniadakis,et al.  Communication Performance Models in Prism : A Spectral Element-Fourier Parallel Navier-Stokes Solver , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[99]  Dimitri J. Mavriplis,et al.  Progress in High-Order Discontinuous Galerkin Methods for Aerospace Applications , 2009 .

[100]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[101]  Esteban Ferrer,et al.  Blade–wake interactions in cross-flow turbines , 2015 .

[102]  Ning Qin,et al.  Unsteady Flow Simulation and Dynamic Stall Behaviour of Vertical Axis Wind Turbine Blades , 2011 .

[103]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[104]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[105]  H. Blackburn,et al.  Large Eddy Simulation of Flow Past a Circular Cylinder , 2022 .

[106]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[107]  S. Sherwin,et al.  STABILISATION OF SPECTRAL/HP ELEMENT METHODS THROUGH SPECTRAL VANISHING VISCOSITY: APPLICATION TO FLUID MECHANICS MODELLING , 2006 .