Maxwell strata in sub-Riemannian problem on the group of motions of a plane

The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

[1]  S. Tikhonov Embedding lattice actions in flows with multidimensional time , 2006 .

[2]  Юрий Леонидович Сачков,et al.  Полное описание стратов Максвелла в обобщенной задаче Дидоны@@@Complete description of the Maxwell strata in the generalized Dido problem , 2006 .

[3]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.

[4]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[5]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[6]  Y. Sachkov Maxwell strata in the Euler elastic problem , 2008 .

[7]  J. Gauthier,et al.  The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.

[8]  R. Brockett Control Theory and Singular Riemannian Geometry , 1982 .

[9]  Множество Максвелла в обобщенной задаче Дидоны@@@The Maxwell set in the generalized Dido problem , 2006 .

[10]  Yuri L. Sachkov Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane , 2010 .

[11]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[12]  Sergey P. Suetin,et al.  О сходимости чебышeвских непрерывных дробей для эллиптических функций@@@Convergence of Chebyshëv continued fractions for elliptic functions , 2003 .

[13]  A. Agrachev Geometry of Optimal Control Problems and Hamiltonian Systems , 2005, math/0506197.

[14]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[15]  Nilpotent (3, 6) Sub-Riemannian Problem , 2002 .

[16]  Discrete symmetries in the generalized Dido problem , 2006 .

[17]  V. Jurdjevic Geometric control theory , 1996 .

[18]  J. Gauthier,et al.  Small sub-Riemannian balls onR3 , 1996 .

[19]  Mirosław Galicki,et al.  Nonholonomic Motion Planning of Mobile Robots , 2009 .

[20]  O. Myasnichenko NILPOTENT (n, n(n + 1)/2) SUB-RIEMANNIAN PROBLEM , 2006 .

[21]  Exponential map in the generalized Dido problem , 2003 .

[22]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[23]  A. Agrachev Exponential mappings for contact sub-Riemannian structures , 1996 .

[24]  Y. Sachkov Conjugate Points in the Euler Elastic Problem , 2008 .

[25]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[26]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[27]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[28]  Y. Sachkov Conjugate points in Euler's elastic problem , 2007, 0705.1003.

[29]  The Step-2 Nilpotent (n, n(n + 1)/2) Sub-Riemannian Geometry , 2006 .

[30]  Yu. L. Sachkov,et al.  Maxwell strata in Euler's elastic problem , 2007, 0705.0614.

[31]  The Maxwell set in the generalized Dido problem , 2006 .

[32]  J. Petitot The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.

[33]  Yurii Leonidovich Sachkov Complete description of the Maxwell strata in the generalized Dido problem , 2006 .

[34]  Estimates of Green potentials. Applications , 2003 .

[35]  Francesco Rossi,et al.  Invariant Carnot--Caratheodory Metrics on S3, SO(3), SL(2), and Lens Spaces , 2007, SIAM J. Control. Optim..

[36]  Об одной проблеме Ульянова@@@On the Ul'yanov problem , 2006 .