Maxwell strata in sub-Riemannian problem on the group of motions of a plane
暂无分享,去创建一个
[1] S. Tikhonov. Embedding lattice actions in flows with multidimensional time , 2006 .
[2] Юрий Леонидович Сачков,et al. Полное описание стратов Максвелла в обобщенной задаче Дидоны@@@Complete description of the Maxwell strata in the generalized Dido problem , 2006 .
[3] Edmund Taylor Whittaker,et al. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions , 1920, Nature.
[4] Lawrence S. Kroll. Mathematica--A System for Doing Mathematics by Computer. , 1989 .
[5] R. Montgomery. A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .
[6] Y. Sachkov. Maxwell strata in the Euler elastic problem , 2008 .
[7] J. Gauthier,et al. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups , 2008, 0806.0734.
[8] R. Brockett. Control Theory and Singular Riemannian Geometry , 1982 .
[9] Множество Максвелла в обобщенной задаче Дидоны@@@The Maxwell set in the generalized Dido problem , 2006 .
[10] Yuri L. Sachkov. Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane , 2010 .
[11] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[12] Sergey P. Suetin,et al. О сходимости чебышeвских непрерывных дробей для эллиптических функций@@@Convergence of Chebyshëv continued fractions for elliptic functions , 2003 .
[13] A. Agrachev. Geometry of Optimal Control Problems and Hamiltonian Systems , 2005, math/0506197.
[14] Giovanna Citti,et al. A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.
[15] Nilpotent (3, 6) Sub-Riemannian Problem , 2002 .
[16] Discrete symmetries in the generalized Dido problem , 2006 .
[17] V. Jurdjevic. Geometric control theory , 1996 .
[18] J. Gauthier,et al. Small sub-Riemannian balls onR3 , 1996 .
[19] Mirosław Galicki,et al. Nonholonomic Motion Planning of Mobile Robots , 2009 .
[20] O. Myasnichenko. NILPOTENT (n, n(n + 1)/2) SUB-RIEMANNIAN PROBLEM , 2006 .
[21] Exponential map in the generalized Dido problem , 2003 .
[22] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[23] A. Agrachev. Exponential mappings for contact sub-Riemannian structures , 1996 .
[24] Y. Sachkov. Conjugate Points in the Euler Elastic Problem , 2008 .
[25] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[26] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[27] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[28] Y. Sachkov. Conjugate points in Euler's elastic problem , 2007, 0705.1003.
[29] The Step-2 Nilpotent (n, n(n + 1)/2) Sub-Riemannian Geometry , 2006 .
[30] Yu. L. Sachkov,et al. Maxwell strata in Euler's elastic problem , 2007, 0705.0614.
[31] The Maxwell set in the generalized Dido problem , 2006 .
[32] J. Petitot. The neurogeometry of pinwheels as a sub-Riemannian contact structure , 2003, Journal of Physiology-Paris.
[33] Yurii Leonidovich Sachkov. Complete description of the Maxwell strata in the generalized Dido problem , 2006 .
[34] Estimates of Green potentials. Applications , 2003 .
[35] Francesco Rossi,et al. Invariant Carnot--Caratheodory Metrics on S3, SO(3), SL(2), and Lens Spaces , 2007, SIAM J. Control. Optim..
[36] Об одной проблеме Ульянова@@@On the Ul'yanov problem , 2006 .