Quantum spectral analysis: bandwidth at time (a lecture)

A quantum time-dependent spectrum analysis, or simply, quantum spectral analysis (QuSA) is presented in this work, and it is based on Schrodinger equation, which is a partial differential equation that describes how the quantum state of a non-relativistic physical system changes with time. In classic world is named bandwidth at time (BAT), which is presented here in opposition and as a complement of traditional spectral analysis frequency-dependent based on Fourier theory. Besides, BAT is a metric, which assesses the impact of the flanks of a signal on its frequency spectrum, which is not taken into account by Fourier theory and even less in real time. Even more, and unlike all derived tools from Fourier Theory (i.e., continuous, discrete, fast, short-time, fractional and quantum Fourier Transform, as well as, Gabor) BAT has the following advantages: a) compact support with excellent energy output treatment, b) low computational cost, O(N) for signals and O(N2) for images, c) it does not have phase uncertainties (indeterminate phase for magnitude = 0) as Discrete and Fast Fourier Transform (DFT, FFT, respectively), d) among others. In fact, BAT constitutes one side of a triangle (which from now on is closed) and it consists of the original signal in time, spectral analysis based on Fourier Theory and BAT. Thus a toolbox is completed, which it is essential for all applications of Digital Signal Processing (DSP) and Digital Image Processing (DIP); and, even, in the latter, BAT allows edge detection (which is called flank detection in case of signals), denoising, despeckling, compression, and superresolution of still images. Such applications include signals intelligence and imagery intelligence. On the other hand, we will present other DIP tools, which are also derived from the Schrodinger equation.

[1]  Mario Mastriani New wavelet-based superresolution algorithm for speckle reduction in SAR images , 2016, ArXiv.

[2]  Shawn Hunt,et al.  Fast piecewise linear predictors for lossless compression of hyperspectral imagery , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Ayush Bhandari,et al.  Sampling and Reconstruction of Sparse Signals in Fractional Fourier Domain , 2010, IEEE Signal Processing Letters.

[4]  Abdullah M. Iliyasu,et al.  Strategies for designing geometric transformations on quantum images , 2011, Theor. Comput. Sci..

[5]  A. Savitzky A Historic Collaboration , 1989 .

[6]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[7]  K. Rao,et al.  Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations , 2006 .

[8]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[9]  C. Burrus,et al.  Noise reduction using an undecimated discrete wavelet transform , 1996, IEEE Signal Processing Letters.

[10]  Pierre Duhamel,et al.  Hyperspectral Image Compression: Adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding , 2008, IEEE Transactions on Image Processing.

[11]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[12]  Mario Mastriani Quantum Boolean image denoising , 2015, Quantum Inf. Process..

[13]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[14]  John Miano,et al.  Compressed image file formats , 1999 .

[15]  Mario Mastriani Denoising based on wavelets and deblurring via self-organizing map for Synthetic Aperture Radar images , 2016, ArXiv.

[16]  Sougato Bose,et al.  Storing, processing, and retrieving an image using quantum mechanics , 2003, SPIE Defense + Commercial Sensing.

[17]  R. Feynman Simulating physics with computers , 1999 .

[18]  Qun Wan,et al.  A theoretical framework for quantum image representation and data loading scheme , 2013, Science China Information Sciences.

[19]  J. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1972, Analytical chemistry.

[20]  V. Jeoti,et al.  A wavelet footprints-based compression scheme for ECG signals , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[21]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[22]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[23]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Anastasis A. Sofokleous,et al.  Review: H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia , 2005, Comput. J..

[25]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.

[26]  Martin Vetterli,et al.  Fast 2-D discrete cosine transform , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[27]  Farhad Kamangar,et al.  Fast Algorithms for the 2-D Discrete Cosine Transform , 1982, IEEE Transactions on Computers.

[28]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[29]  Elizabeth Zubritsky,et al.  Top 10 Articles. , 2000 .

[30]  Mario Mastriani,et al.  Fast Cosine Transform to increase speed-up and efficiency of Karhunen-Loeve Transform for lossy image compression , 2010, ArXiv.

[31]  K. R. Rao,et al.  The Transform and Data Compression Handbook , 2000 .

[32]  Mario Mastriani,et al.  Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema , 2010 .

[33]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[34]  John L. Semmlow,et al.  Biosignal and biomedical image processing : MATLAB-based applications , 2004 .

[35]  R. R. Clarke Transform coding of images , 1985 .

[36]  Arthur Robert Weeks,et al.  The Pocket Handbook of Image Processing Algorithms In C , 1993 .

[37]  G.S. Moschytz,et al.  Practical fast 1-D DCT algorithms with 11 multiplications , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[38]  Xiao-Ping Zhang,et al.  Adaptive denoising based on SURE risk , 1998, IEEE Signal Processing Letters.

[39]  Lijiang Chen,et al.  SQR: a simple quantum representation of infrared images , 2014, Quantum Information Processing.

[40]  Jungwoo Lee Optimized quadtree for Karhunen-Loeve transform in multispectral image coding , 1999, IEEE Trans. Image Process..

[41]  P. G. Guest Numerical Methods of Curve Fitting , 1961 .

[42]  Mario Mastriani,et al.  Enhanced Directional Smoothing Algorithm for Edge-Preserving Smoothing of Synthetic-Aperture Radar Images , 2016, ArXiv.

[43]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[44]  R. Stevenson,et al.  Image Sequence Processing , 2015 .

[45]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[46]  Andreas Klappenecker,et al.  Engineering functional quantum algorithms , 2003 .

[47]  Jonathan V. Sweedler,et al.  Celebrating the 75th anniversary of the ACS Division of Analytical Chemistry: a special collection of the most highly cited analytical chemistry papers published between 1938 and 2012. , 2013, Analytical chemistry.

[48]  Iain E. G. Richardson,et al.  H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia , 2003 .

[49]  E. Martin Novel method for stride length estimation with body area network accelerometers , 2011, 2011 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems.

[50]  Seema Bikramjeet Kaur Wavelet Thresholding for Speckle Noise Reduction , 2013 .

[51]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[52]  Yu-Guang Yang,et al.  Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding , 2014, Inf. Sci..

[53]  Rajesh Hingorani,et al.  Multispectral KLT-wavelet data compression for Landsat thematic mapper images , 1992, Data Compression Conference, 1992..

[54]  Toshiro Kawahara,et al.  Sparse super-resolution reconstructions of video from mobile devices in digital TV broadcast applications , 2006, SPIE Optics + Photonics.

[55]  Martin Vetterli,et al.  Spatial adaptive wavelet thresholding for image denoising , 1997, Proceedings of International Conference on Image Processing.

[56]  Jack J. Dongarra,et al.  Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..

[57]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[58]  A. Vlasov Quantum Computations and Images Recognition , 1997, quant-ph/9703010.

[59]  David Jerison The World According to Wavelets : The Story of a Mathematical Technique in the Making Reviewed by David Jerison , 1999 .

[60]  Robert L. Stevenson,et al.  Image Sequence Processing , 2015 .

[61]  Jia Jie Bayesian denoising of visual images in the wavelet domain , 2003 .

[62]  Jie Liu Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection , 2012 .

[63]  Ali N. Akansu,et al.  Emerging applications of wavelets: A review , 2010, Phys. Commun..

[64]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[65]  N. Wiener Hermitian Polynomials and Fourier Analysis , 1929 .

[66]  Kai Xu,et al.  A novel quantum representation for log-polar images , 2013, Quantum Information Processing.

[67]  M. Horodecki,et al.  Universal Quantum Information Compression , 1998, quant-ph/9805017.

[68]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[69]  Gilbert Strang,et al.  The Discrete Cosine Transform , 1999, SIAM Rev..

[70]  Chao Lu,et al.  Mathematics of Multidimensional Fourier Transform Algorithms , 1993 .

[71]  David P. DiVincenzo,et al.  Quantum Computing: A Short Course from Theory to Experiment , 2004 .

[72]  Raymond Laflamme,et al.  An Introduction to Quantum Computing , 2007, Quantum Inf. Comput..

[73]  C. Valens,et al.  A Really Friendly Guide to Wavelets , 1999 .

[74]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[75]  Kannan Ramchandran,et al.  Low-complexity image denoising based on statistical modeling of wavelet coefficients , 1999, IEEE Signal Processing Letters.

[76]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[77]  Andrew G. Tescher,et al.  Practical transform coding of multispectral imagery , 1995, IEEE Signal Process. Mag..

[78]  Qiaoyan Wen,et al.  A Quantum Watermark Protocol , 2013 .

[79]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[80]  David Salesin,et al.  Wavelets for computer graphics: theory and applications , 1996 .

[81]  Andrey S. Krylov,et al.  Image Interpolation by Super-Resolution , 2006 .

[82]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[83]  Din-Chang Tseng,et al.  A wavelet-based multiresolution edge detection and tracking , 2005, Image Vis. Comput..

[84]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[85]  A. Drozdov,et al.  Comparison of wavelet transform and Fourier transform applied to analysis of non-stationary processes , 2014 .

[86]  Paola Cappellaro,et al.  Time-optimal control by a quantum actuator , 2015 .

[87]  N. Gisin,et al.  Quantum cryptography , 1998 .

[88]  Pierre Duhamel,et al.  Polynomial transform computation of the 2-D DCT , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[89]  Pierre Moulin,et al.  Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients , 2001, IEEE Trans. Image Process..

[90]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[91]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[92]  Carl A. Gunter,et al.  In handbook of theoretical computer science , 1990 .

[93]  MUNSI ALAUL HAQUE,et al.  A two-dimensional fast cosine transform , 1985, IEEE Trans. Acoust. Speech Signal Process..

[94]  Mario Mastriani,et al.  Kalman's shrinkage for wavelet-based despeckling of SAR images , 2008, ArXiv.

[95]  Yonina C. Eldar Quantum signal processing , 2002, IEEE Signal Process. Mag..

[96]  H. De Bie,et al.  Fourier transform and related integral transforms in superspace , 2008, 0805.1918.

[97]  Kai Lu,et al.  NEQR: a novel enhanced quantum representation of digital images , 2013, Quantum Information Processing.

[98]  Eric L. Miller,et al.  Wavelet domain image restoration with adaptive edge-preserving regularization , 2000, IEEE Trans. Image Process..

[99]  Václav Simek,et al.  GPU Acceleration of 2D-DWT Image Compression in MATLAB with CUDA , 2008, 2008 Second UKSIM European Symposium on Computer Modeling and Simulation.

[100]  R. Haddad,et al.  Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets , 1992 .

[101]  N. Aranki,et al.  Hyperspectral data compression , 2003 .

[102]  Salvador Elías Venegas-Andraca,et al.  Discrete quantum walks and quantum image processing , 2005 .

[103]  R. Tolimieri,et al.  Algorithms for Discrete Fourier Transform and Convolution , 1989 .

[104]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[105]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[106]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[107]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[108]  Chris Lomont,et al.  Quantum image processing (QuIP) , 2003, 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings..

[109]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[110]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[111]  pyn y〉〈y,et al.  Quantum Data Compression , 2003 .

[112]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[113]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[114]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[115]  Ephraim Feig,et al.  New scaled DCT algorithms for fused multiply/add architectures , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[116]  Xiamu Niu,et al.  Comment on: Novel image encryption/decryption based on quantum fourier transform and double phase encoding , 2014, Quantum Inf. Process..

[117]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[118]  Qingxin Zhu,et al.  Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases , 2014, Inf. Sci..

[119]  Nan Jiang,et al.  The quantum realization of Arnold and Fibonacci image scrambling , 2014, Quantum Inf. Process..

[120]  Stephen R. Marsland,et al.  Interpolation Models for Image Super-resolution , 2008, 4th IEEE International Symposium on Electronic Design, Test and Applications (delta 2008).

[121]  Mario Mastriani,et al.  Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain , 2007, 1807.11571.

[122]  Mario Mastriani Fuzzy thresholding in wavelet domain for speckle reduction in Synthetic Aperture Radar images , 2016, ArXiv.

[123]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[124]  Xiao-Ping Zhang,et al.  Thresholding neural network for adaptive noise reduction , 2001, IEEE Trans. Neural Networks.

[125]  Lijiang Chen,et al.  Quantum digital image processing algorithms based on quantum measurement , 2013 .

[126]  Abdullah M. Iliyasu,et al.  Fast Geometric Transformations on Quantum Images , 2010 .

[127]  Zhang Naitong,et al.  A novel fractional wavelet transform and its applications , 2012 .

[128]  Paola Cappellaro,et al.  Polarizing Nuclear Spins in Silicon Carbide , 2015 .

[129]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[130]  Mario Mastriani Systholic Boolean Orthonormalizer Network in Wavelet Domain for Microarray Denoising , 2008 .

[131]  Hui Chen,et al.  A watermark strategy for quantum images based on quantum fourier transform , 2012, Quantum Information Processing.

[132]  Mario Mastriani,et al.  Rule of Three for Superresolution of Still Images with Applications to Compression and Denoising , 2014, ArXiv.

[133]  Ping-Sing Tsai,et al.  JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures , 2004 .

[134]  P Cappellaro,et al.  Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond. , 2014, Nature nanotechnology.

[135]  E. Jacobsen,et al.  The sliding DFT , 2003, IEEE Signal Process. Mag..

[136]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[137]  Dirk Roose,et al.  Wavelet-based image denoising using a Markov random field a priori model , 1997, IEEE Trans. Image Process..

[138]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[139]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[140]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[141]  Jianhong Shen THE ZEROS OF THE DAUBECHIES POLYNOMIALS , 2007 .

[142]  James F. Blinn,et al.  What's that deal with the DCT? , 1993, IEEE Computer Graphics and Applications.

[143]  James S. Walker,et al.  A Primer on Wavelets and Their Scientific Applications , 1999 .

[144]  Pierre Duhamel,et al.  A DCT chip based on a new structured and computationally efficient DCT algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[145]  Daniel N. Rockmore,et al.  The FFT: an algorithm the whole family can use , 2000, Comput. Sci. Eng..

[146]  Naitong Zhang,et al.  A novel fractional wavelet transform and its applications , 2011, Science China Information Sciences.

[147]  Kaoru Hirota,et al.  Efficient Color Transformations on Quantum Images , 2011, J. Adv. Comput. Intell. Intell. Informatics.

[148]  Y. Meyer Wavelets and Operators , 1993 .

[149]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[150]  Abdullah M. Iliyasu,et al.  A Multi-Channel Representation for images on quantum computers using the RGBα color space , 2011, 2011 IEEE 7th International Symposium on Intelligent Signal Processing.

[151]  W. Kilmer A Friendly Guide To Wavelets , 1998, Proceedings of the IEEE.

[152]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[153]  Mario Mastriani,et al.  Neural shrinkage for wavelet-based SAR despeckling , 2016, ArXiv.

[154]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[155]  Ran Tao,et al.  Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain , 2008, IEEE Transactions on Signal Processing.

[156]  Seong-Geun Kwon,et al.  Multispectral Image Data Compression Using Classified Prediction and KLT in Wavelet Transform Domain , 2002 .

[157]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[158]  Richard Jozsa,et al.  Universal quantum information compression and degrees of prior knowledge , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[159]  Langis Gagnon,et al.  Speckle noise reduction of airborne SAR images with symmetric Daubechies wavelets , 1996, Defense, Security, and Sensing.

[160]  David H. Bailey,et al.  The Fractional Fourier Transform and Applications , 1991, SIAM Rev..

[161]  P. Lafrance,et al.  Digital filters , 1974, Proceedings of the IEEE.

[162]  José Ignacio Latorre,et al.  Image compression and entanglement , 2005, ArXiv.

[163]  Ralf Schutzhold Pattern recognition on a quantum computer , 2002 .

[164]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[165]  Paola Cappellaro,et al.  Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques , 2014 .

[166]  F. Yates Design and Analysis of Factorial Experiments , 1958 .

[167]  LJubisa Stankovic,et al.  Fractional Fourier transform as a signal processing tool: An overview of recent developments , 2011, Signal Process..

[168]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[169]  Salvador E. Venegas-Andraca,et al.  Processing images in entangled quantum systems , 2010, Quantum Inf. Process..

[170]  Xiao-Ping Zhang,et al.  Nonlinear adaptive noise suppression based on wavelet transform , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[171]  E. Condon,et al.  Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[173]  Minh N. Do,et al.  Image interpolation using multiscale geometric representations , 2007, Electronic Imaging.

[174]  Martin Kraus,et al.  GPU-Based Edge-Directed Image Interpolation , 2007, SCIA.

[175]  Ingrid Daubechies Different Perspectives on Wavelets , 2016 .

[176]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[177]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[178]  Kaoru Hirota,et al.  A flexible representation of quantum images for polynomial preparation, image compression, and processing operations , 2011, Quantum Inf. Process..

[179]  Marcel Boumans,et al.  Calculus of Observations , 2015 .

[180]  John Miano,et al.  Compressed image file formats - JPEG, PNG, GIF, XBM, BMP , 1999 .

[181]  H. Fan,et al.  Optical transformation from chirplet to fractional Fourier transformation kernel , 2009, 0902.1800.

[182]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[183]  R. J. Schalko Digital Image Processing and Computer Vision , 1989 .

[184]  T. S. West Analytical Chemistry , 1969, Nature.

[185]  Ri-Gui Zhou,et al.  Quantum Image Encryption and Decryption Algorithms Based on Quantum Image Geometric Transformations , 2013 .

[186]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[187]  Victor Podlozhnyuk,et al.  Image Convolution with CUDA , 2007 .

[188]  Steven G. Krantz,et al.  A Panorama of Harmonic Analysis , 1999 .

[189]  Xiao-Ping Zhang,et al.  A new time-scale adaptive denoising method based on wavelet shrinkage , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[190]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[191]  Hua Zhang,et al.  Novel image encryption/decryption based on quantum Fourier transform and double phase encoding , 2013, Quantum Inf. Process..

[192]  Yu-Len Huang,et al.  Wavelet-based image interpolation using multilayer perceptrons , 2005, Neural Computing & Applications.

[193]  C. Lanczos,et al.  Some improvements in practical Fourier analysis and their application to x-ray scattering from liquids , 1942 .

[194]  Nicolas C. Pégard,et al.  Optimizing holographic data storage using a fractional Fourier transform. , 2011, Optics letters.

[195]  T. Felbinger,et al.  Lossless quantum data compression and variable-length coding , 2001, quant-ph/0105026.

[196]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[197]  Mathias Wien,et al.  Variable block size transforms for hybrid video coding , 2004 .

[198]  Mario Mastriani,et al.  Denoising and compression in wavelet domain via projection onto approximation coefficients , 2009, ArXiv.

[199]  Prasanta K. Panigrahi,et al.  Quantum Image Representation Through Two-Dimensional Quantum States and Normalized Amplitude , 2013, ArXiv.

[200]  Yi Zhang,et al.  FLPI: representation of quantum images for log-polar coordinate , 2013, Other Conferences.

[201]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[202]  Sang Uk Lee,et al.  A fast algorithm for 2-D DCT , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[203]  P. Lewis,et al.  Historical notes on the fast Fourier transform , 1967, IEEE Transactions on Audio and Electroacoustics.

[204]  Applied Spectroscopy , 2010 .

[205]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[206]  Jin Jiang,et al.  Time-frequency feature representation using energy concentration: An overview of recent advances , 2009, Digit. Signal Process..

[207]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[208]  Sean Hallgren,et al.  An improved quantum Fourier transform algorithm and applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[209]  Bo Sun,et al.  Assessing the similarity of quantum images based on probability measurements , 2012, 2012 IEEE Congress on Evolutionary Computation.

[210]  R. A. FISHER,et al.  The Design and Analysis of Factorial Experiments , 1938, Nature.

[211]  Qingxin Zhu,et al.  Image storage, retrieval, compression and segmentation in a quantum system , 2013, Quantum Inf. Process..