Computing and verifying depth orders

A depth order on a set of objects is an order such that object <italic>a</italic> comes before object <italic>a′</italic> in the order when <italic>a′</italic> lies behind <italic>a′</italic>, or, in other words, when <italic>a</italic> is (partially) hidden by <italic>a′</italic> by <italic>a′</italic>. We present efficient algorithms for the computation and verification of depth orders of sets of <italic>n</italic> rods in 3–space. Our algorithms run in time <italic>O</italic>(<italic>n</italic><supscrpt>4/3+ε</supscrpt>), for any fixed ε > 0). If all rods are axis-parallel, or, more generally, have only a constant number of different orientations, then the sorting algorithm runs in <italic>O</italic>(<italic>n</italic> log<supscrpt>2</supscrpt> <italic>n</italic>) time. The algorithms can be generalized to handle triangles and other polygons instead of rods. They are based on a general framework for computing and verifying linear extensions of implicitly defined binary relations.

[1]  Mark de Berg,et al.  Hidden surface removal for axis-parallel polyhedra , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[2]  Otto Nurmi On translating a set of objects in 2- and 3-dimensional space , 1986, Comput. Vis. Graph. Image Process..

[3]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[4]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[5]  Micha Sharir,et al.  Efficient hidden surface removal for objects with small union size , 1991, SCG '91.

[6]  Mariette Yvinec,et al.  Output-Sensitive Generation of the Perspective View of Isothetic Parallelepipeds , 1990, SWAT.

[7]  John E. Howland,et al.  Computer graphics , 1990, IEEE Potentials.

[8]  Leonidas J. Guibas,et al.  Counting and cutting cycles of lines and rods in space , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[9]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[10]  Mark de Berg Dynamic Output-sensitive Hidden Surface Removal for C-oriented Polyhedra , 1992, Comput. Geom..

[11]  Ralf Hartmut Güting,et al.  New algorithms for special cases of the hidden line elimination problem , 1987, Comput. Vis. Graph. Image Process..

[12]  Otto Nurmi On translating a set of objects in two- and threedimensional spaces , 1986 .

[13]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[14]  Leonidas J. Guibas,et al.  On translating a set of rectangles , 1980, STOC '80.

[15]  F. Frances Yao,et al.  Binary partitions with applications to hidden surface removal and solid modelling , 1989, SCG '89.

[16]  Jirí Matousek,et al.  Ray shooting and parametric search , 1992, STOC '92.

[17]  Micha Sharir,et al.  Output-sensitive hidden surface removal , 1989, 30th Annual Symposium on Foundations of Computer Science.