Adaptive Step-size Control in Simulation of diffusive CVD Processes

We present control strategies of a diffusion process for chemical vapor deposition for metallic bipolar plates. In the models, we discuss the application of different models to simulate the plasma-transport of chemical reactants in the gas-chamber. The contribution are an optimal control problem based on a PID control to obtain a homogeneous layering. We have taken into account one- and two-dimensional problems that are given with constraints and control functions. A finite-element formulation with adaptive feedback control for time-step selection has been developed for the diffusion process. The optimization is presented with efficient algorithms. Numerical experiments are discussed with respect to the diffusion processes of the macroscopic model.

[1]  K. Shimizu,et al.  Asymptotic stabilization by PID control: Stability analysis based on minimum phase and high‐gain feedback , 2006 .

[2]  M. Ohring The Materials Science of Thin Films , 1991 .

[3]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[4]  Jürgen Geiser,et al.  Iterative operator-splitting methods for linear problems , 2007, Int. J. Comput. Sci. Eng..

[5]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[6]  Samir Karaa,et al.  High‐order difference schemes for 2D elliptic and parabolic problems with mixed derivatives , 2007 .

[7]  I. Faragó,et al.  On the convergence and local splitting error of different splitting schemes , 2005 .

[8]  S. Middleman,et al.  Process engineering analysis in semiconductor device fabrication , 1993 .

[9]  C. Lubich A variational splitting integrator for quantum molecular dynamics , 2004 .

[10]  István Faragó,et al.  Splitting Methods and Their Application to the Abstract Cauchy Problems , 2004, NAA.

[11]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[12]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[13]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[14]  Guoqing Liu,et al.  High-Order Compact ADI Methods for Parabolic Equations , 2006, Comput. Math. Appl..

[15]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[16]  Alvaro L. G. A. Coutinho,et al.  Control strategies for timestep selection in simulation of coupled viscous flow and heat transfer , 2002 .

[17]  M. Barsoum,et al.  Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition , 2007 .

[18]  Christian A. Ringhofer,et al.  An Asymptotic Analysis for a Model of Chemical Vapor Deposition on a Microstructured Surface , 1998, SIAM J. Appl. Math..

[19]  R. Brinkmann,et al.  A multi-component transport model for non-equilibrium low-temperature low-pressure plasmas , 2006 .

[20]  J. Geiser Discretization methods with embedded analytical solutions for convection–diffusion dispersion–reaction equations and applications , 2007 .

[21]  V. Hlavácek,et al.  Morphology and Film Growth in CVD Reactions , 1995 .

[22]  I. Faragó,et al.  Weighted sequential splittings and their analysis , 2005 .

[23]  Christian Großmann,et al.  Numerik partieller Differentialgleichungen , 1994 .

[24]  Thomas F. Edgar,et al.  Continuation method for the modified ziegler-nichols tuning of multiloop control systems , 2005 .

[25]  Jürgen Geiser,et al.  Numerical Simulation of a Model for Transport and Reaction of Radionuclides , 2001, LSSC.

[26]  J. Emmerlich,et al.  Homoepitaxial growth of Ti-Si-C MAX-phase thin films on bulk Ti3SiC2 substrates , 2007 .

[27]  Holger Lutz,et al.  Taschenbuch der Regelungstechnik , 1995 .

[28]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[29]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[30]  H. H. Lee Fundamentals of Microelectronics Processing , 1990 .

[31]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .