Measurement System Analysis for Binary Data

We describe a methodology for the assessment of the repeatability and reproducibility (R&R) of measurement systems that measure on a binary scale, such as pass–fail inspections. We focus on the situation where no reference values can be obtained for the objects in the experiment and consequently model the results of the R&R experiment as a latent class model. We provide estimators based on the maximum likelihood approach and the method of moments, and compare their properties. We also give guidelines for model checking and recommendations for sample sizes. The methodology is illustrated by an example.

[1]  W. Blischke Moment Estimators for the Parameters of a Mixture of Two Binomial Distributions , 1960 .

[2]  Jeroen de Mast,et al.  Measurement system analysis for categorical measurements: Agreement and kappa-type indices , 2007 .

[3]  Russell A. Boyles,et al.  Gauge Capability for Pass—Fail Inspection , 2001, Technometrics.

[4]  P L Fidler,et al.  Goodness-of-Fit Testing for Latent Class Models. , 1993, Multivariate behavioral research.

[5]  S. Zeger,et al.  Latent Class Model Diagnosis , 2000, Biometrics.

[6]  A. Formann,et al.  Latent Class Model Diagnosis from a Frequentist Point of View , 2003, Biometrics.

[7]  M. R. Novick,et al.  The Role of Exchangeability in Inference , 1981 .

[8]  Lilian M. de Menezes On fitting latent class models for binary data: The estimation of standard errors , 1999 .

[9]  W. N. Wieringen,et al.  Statistical Models for the Precision of Categorical Measurement , 2003 .

[10]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[11]  Wessel N. van Wieringen,et al.  On identifiability of certain latent class models , 2005 .

[12]  M. Tan,et al.  Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. , 1996, Biometrics.

[13]  Scott Zeger,et al.  Methods for evaluating the performance of diagnostic tests in the absence of a gold standard: a latent class model approach , 2002, Statistics in medicine.

[14]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[15]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[16]  S. Walter,et al.  Estimating the error rates of diagnostic tests. , 1980, Biometrics.

[17]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[18]  Anton K. Formann,et al.  Latent class model diagnostics - a review and some proposals , 2003, Comput. Stat. Data Anal..

[19]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[20]  S D Walter,et al.  Effects of dependent errors in the assessment of diagnostic test performance. , 1997, Statistics in medicine.

[21]  Stephen W. Raudenbush,et al.  Random effects models. , 1994 .

[22]  Stephen B. Vardeman,et al.  Two-way random-effects analyses and gauge R&R studies , 1999 .

[23]  Jeroen de Mast,et al.  Modeling and Evaluating Repeatability and Reproducibility of Ordinal Classifications , 2010, Technometrics.

[24]  Edwin R. van den Heuvel,et al.  A Comparison of Methods for the Evaluation of Binary Measurement Systems , 2005 .

[25]  Stefan H. Steiner,et al.  Assessing a Binary Measurement System , 2008 .

[26]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[27]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[28]  Connie M. Borror,et al.  A Review of Methods for Measurement Systems Capability Analysis , 2003 .