One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

Abstract The influence of spatially-periodic momentum modulation on beam dynamics in parity-time ( PT ) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrodinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

[1]  D. Christodoulides,et al.  Dissipative photonic lattice solitons. , 2004, Optics letters.

[2]  Z. Musslimani,et al.  Optical Solitons in PT Periodic Potentials , 2008 .

[3]  Dorje C. Brody,et al.  Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.

[4]  Daquan Lu,et al.  Solitons supported by complex PT-symmetric Gaussian potentials , 2011 .

[5]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[6]  Yong Chen,et al.  Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials , 2016, Scientific Reports.

[7]  Zhenya Yan,et al.  Solitons in a nonlinear Schrödinger equation with PT -symmetric potentials and inhomogeneous nonlinearity: Stability and excitation of nonlinear modes , 2015, 1509.05888.

[8]  Zhenya Yan Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  J. Main,et al.  Dipolar Bose-Einstein condensates in a PT-symmetric double-well potential , 2014, 1403.6742.

[10]  S. Kotani Generalized Floquet theory for stationary Schrödinger operators in one dimension , 1997 .

[11]  J. Main,et al.  Cusp bifurcation in the eigenvalue spectrum of PT-symmetric Bose-Einstein condensates , 2015, 1501.03725.

[12]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[13]  Z. Musslimani,et al.  PT -symmetric optical lattices , 2010 .

[14]  Z. Ahmed Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex -invariant potential , 2001 .

[15]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[16]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[17]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[18]  Yong Chen,et al.  On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT- and non- PT-symmetric potentials. , 2016, Chaos.

[19]  Zhenya Yan,et al.  Dynamical behaviors of optical solitons in parity–time (PT) symmetric sextic anharmonic double-well potentials , 2015 .

[20]  B. Malomed,et al.  Stability boundary and collisions of two-dimensional solitons in PT-symmetric couplers with the cubic-quintic nonlinearity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Mohammad-Ali Miri,et al.  Observation of defect states in PT-symmetric optical lattices. , 2013, Physical review letters.

[22]  D. N. Christodoulides,et al.  Two dimensional gap solitons in self-defocusing media with PT-symmetric superlattice , 2016, Commun. Nonlinear Sci. Numer. Simul..

[23]  D. N. Christodoulides,et al.  $\mathcal{PT}$-Symmetric Periodic Optical Potentials , 2011 .

[24]  Jianke Yang,et al.  Stability analysis for solitons in PT-symmetric optical lattices , 2012, 1201.2696.

[25]  Andrea Alù,et al.  PT metamaterials via complex-coordinate transformation optics. , 2012, Physical review letters.

[26]  V. Konotop,et al.  Bose-Einstein condensates with localized spin-orbit coupling: Soliton complexes and spinor dynamics , 2014, 1411.7322.

[27]  M. Ablowitz,et al.  Spectral renormalization method for computing self-localized solutions to nonlinear systems. , 2005, Optics letters.

[28]  Guoquan Zhou,et al.  Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials , 2014 .

[29]  Z. Musslimani,et al.  Analytical solutions to a class of nonlinear Schrödinger equations with -like potentials , 2008 .

[30]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[31]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[32]  G. Assanto,et al.  Nonlocal gap solitons in PT -symmetric periodic potentials with defocusing nonlinearity , 2014, 1811.02460.

[33]  V. Konotop,et al.  Solitons in PT-symmetric nonlinear lattices , 2011, 1104.0276.

[34]  Chao-Qing Dai,et al.  Localized modes of the (n+1)-dimensional Schrödinger equation with power-law nonlinearities in PT-symmetric potentials , 2017, Commun. Nonlinear Sci. Numer. Simul..

[35]  B. Malomed,et al.  Stable dark solitons in PT-symmetric dual-core waveguides , 2012, 1211.3746.

[36]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[37]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[38]  Holger Cartarius,et al.  Model of a PT-symmetric Bose-Einstein condensate in a delta-function double-well potential , 2012, 1203.1885.

[39]  Bikashkali Midya,et al.  A note on the PT invariant periodic potential V(x)=4cos2x+4iV0sin2x , 2010, 1004.3218.

[40]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[41]  N. Moiseyev Crossing rule for a PT-symmetric two-level time-periodic system , 2011 .

[42]  Zhenya Yan,et al.  Spatial solitons and stability in self-focusing and defocusing Kerr nonlinear media with generalized parity-time-symmetric Scarff-II potentials. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  M. Berry,et al.  Optical lattices with PT symmetry are not transparent , 2008 .

[44]  V. C. Kuriakose,et al.  Influence of the imaginary component of the photonic potential on the properties of solitons in PT -symmetric systems , 2014 .

[45]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[46]  Jianke Yang Symmetry breaking of solitons in one-dimensional parity-time-symmetric optical potentials. , 2014, Optics letters.

[47]  V. Konotop,et al.  Nonlinear modes in the harmonic PT-symmetric potential , 2012, 1201.6638.

[48]  Mordechai Segev,et al.  Nonlinearly induced PT transition in photonic systems. , 2013, Physical review letters.

[49]  J. Main,et al.  Coupling approach for the realization of a PT -symmetric potential for a Bose-Einstein condensate in a double well , 2014, 1409.7490.