An improved quadrilateral shell element based on the Hu–Washizu functional

In this paper a robust and effective 4-node shell element for the structural analysis of thin structures is described. A Hu–Washizu functional with independent displacements, stress resultants and shell strains is the variational basis of the theory. Based on a previous paper an additional interpolation part using quadratic shape functions is introduced for the independent shell strains. Especially for unstructured meshes this leads to an improved convergence behavior. The expanded element formulation proves to be insensitive to mesh distortion. Another well-known feature of the mixed hybrid element is the robustness in nonlinear applications with large deformations.

[1]  Peter Wriggers,et al.  A nonlinear quadrilateral shell element with drilling degrees of freedom , 1992 .

[2]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[3]  F. Gruttmann,et al.  Structural analysis of composite laminates using a mixed hybrid shell element , 2006 .

[4]  N. F. Knight,et al.  Raasch Challenge for Shell Elements , 1997 .

[5]  B. Brank,et al.  Hybrid-mixed shell quadrilateral that allows for large solution steps and is low-sensitive to mesh distortion , 2019, Computational Mechanics.

[6]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[7]  Phill-Seung Lee,et al.  A new MITC4+ shell element , 2017 .

[8]  Werner Wagner,et al.  A simple finite rotation formulation for composite shell elements , 1994 .

[9]  Gennady M. Kulikov,et al.  A family of ANS four‐node exact geometry shell elements in general convected curvilinear coordinates , 2010 .

[10]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[11]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[12]  Gennady M. Kulikov,et al.  Efficient mixed Timoshenko–Mindlin shell elements , 2002 .

[13]  C. Choi,et al.  An Efficient Four Node Degenerated Shell Element Based on the Assumed Covariant Strain , 1994 .

[14]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[15]  K. Wisniewski,et al.  Improved four‐node Hellinger–Reissner elements based on skew coordinates , 2008 .

[16]  B. Brank,et al.  Hybrid-Mixed Shell Finite Elements and Implicit Dynamic Schemes for Shell Post-buckling , 2019, Advanced Structured Materials.

[17]  K. Wisniewski,et al.  Improved 4-node Hu-Washizu elements based on skew coordinates , 2009 .

[18]  F. Gruttmann,et al.  A linear quadrilateral shell element with fast stiffness computation , 2005 .

[19]  Werner Wagner,et al.  A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .

[20]  Eduardo N. Dvorkin,et al.  Our discrete-Kirchhoff and isoparametric shell elements for nonlinear analysis—An assessment , 1983 .

[21]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[22]  Y. Başar,et al.  On an isoparametric finite-element for composite laminates with finite rotations , 1993 .

[23]  K. Bathe,et al.  The MITC4+shell element in geometric nonlinear analysis , 2017 .

[24]  F. Gruttmann,et al.  Four-node Hu-Washizu elements based on skew coordinates and contravariant assumed strain , 2010 .

[25]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[26]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[27]  T. Pian,et al.  Rational approach for assumed stress finite elements , 1984 .

[28]  Manfred Bischoff,et al.  The discrete strain gap method and membrane locking , 2005 .

[29]  C. L. Chow,et al.  A mixed formulation of a four-node mindlin shell/plate with interpolated covariant transverse shear strains , 1991 .

[30]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .