An improved quadrilateral shell element based on the Hu–Washizu functional
暂无分享,去创建一个
[1] Peter Wriggers,et al. A nonlinear quadrilateral shell element with drilling degrees of freedom , 1992 .
[2] Richard H. Macneal,et al. A simple quadrilateral shell element , 1978 .
[3] F. Gruttmann,et al. Structural analysis of composite laminates using a mixed hybrid shell element , 2006 .
[4] N. F. Knight,et al. Raasch Challenge for Shell Elements , 1997 .
[5] B. Brank,et al. Hybrid-mixed shell quadrilateral that allows for large solution steps and is low-sensitive to mesh distortion , 2019, Computational Mechanics.
[6] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[7] Phill-Seung Lee,et al. A new MITC4+ shell element , 2017 .
[8] Werner Wagner,et al. A simple finite rotation formulation for composite shell elements , 1994 .
[9] Gennady M. Kulikov,et al. A family of ANS four‐node exact geometry shell elements in general convected curvilinear coordinates , 2010 .
[10] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .
[11] K. Bathe,et al. A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .
[12] Gennady M. Kulikov,et al. Efficient mixed Timoshenko–Mindlin shell elements , 2002 .
[13] C. Choi,et al. An Efficient Four Node Degenerated Shell Element Based on the Assumed Covariant Strain , 1994 .
[14] J. C. Simo,et al. Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .
[15] K. Wisniewski,et al. Improved four‐node Hellinger–Reissner elements based on skew coordinates , 2008 .
[16] B. Brank,et al. Hybrid-Mixed Shell Finite Elements and Implicit Dynamic Schemes for Shell Post-buckling , 2019, Advanced Structured Materials.
[17] K. Wisniewski,et al. Improved 4-node Hu-Washizu elements based on skew coordinates , 2009 .
[18] F. Gruttmann,et al. A linear quadrilateral shell element with fast stiffness computation , 2005 .
[19] Werner Wagner,et al. A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .
[20] Eduardo N. Dvorkin,et al. Our discrete-Kirchhoff and isoparametric shell elements for nonlinear analysis—An assessment , 1983 .
[21] Hilde van der Togt,et al. Publisher's Note , 2003, J. Netw. Comput. Appl..
[22] Y. Başar,et al. On an isoparametric finite-element for composite laminates with finite rotations , 1993 .
[23] K. Bathe,et al. The MITC4+shell element in geometric nonlinear analysis , 2017 .
[24] F. Gruttmann,et al. Four-node Hu-Washizu elements based on skew coordinates and contravariant assumed strain , 2010 .
[25] R. Cook,et al. Concepts and Applications of Finite Element Analysis , 1974 .
[26] R. L. Harder,et al. A proposed standard set of problems to test finite element accuracy , 1985 .
[27] T. Pian,et al. Rational approach for assumed stress finite elements , 1984 .
[28] Manfred Bischoff,et al. The discrete strain gap method and membrane locking , 2005 .
[29] C. L. Chow,et al. A mixed formulation of a four-node mindlin shell/plate with interpolated covariant transverse shear strains , 1991 .
[30] T. Hughes,et al. Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .