The optimal projection equations for reduced-order, discrete-time modelling, estimation and control

The optimal projection equations derived previously for reduced-order, continuous-time modelling, estimation and control are developed for the discrete-time case. The design equations are presented in a concise and unified manner to facilitate their accessibility for the development of numerical algorithms for practical applications. As in the continuous-time case, the standard Kalman filter and linear-quadratic-Gaussian results are immediately obtained as special cases of the estimation and control results.

[1]  Tosio Kato Perturbation theory for linear operators , 1966 .

[2]  D. Mitra Analytical results on the use of reduced models in the control of linear dynamical systems , 1969 .

[3]  C. Sims,et al.  Specific optimal estimation , 1969 .

[4]  Allen R. Stubberud,et al.  Reduced order Kalman filter , 1969 .

[5]  M. Athans,et al.  On the design of optimal constrained dynamic compensators for linear constant systems , 1970 .

[6]  D. Wilson Optimum solution of model-reduction problem , 1970 .

[7]  M. Athans,et al.  Optimal limited state variable feedback controllers for linear systems , 1971 .

[8]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[9]  P. Sarachik,et al.  The design of optimal compensators for linear constant systems with inaccessible states , 1973 .

[10]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[11]  J. Aplevich Approximation of discrete linear systems , 1973 .

[12]  D. Wilson,et al.  Model reduction for multivariable systems , 1974 .

[13]  C. Knapp,et al.  Optimal constant controllers for stochastic linear systems , 1975 .

[14]  B. Kurtaran,et al.  Optimal low-order controllers for linear stochastic systems , 1975 .

[15]  Jerry M. Mendel,et al.  On the design of optimal time-invariant compensators for linear stochastic time-invariant systems , 1975 .

[16]  Robert B. Asher,et al.  Linear discrete stochastic control with a reduced-order dynamic compensator , 1976 .

[17]  Robert B. Asher,et al.  Bias, variance, and estimation error in reduced order filters , 1976, Autom..

[18]  J. Galdos,et al.  Information and distortion in reduced-order filter design , 1977, IEEE Trans. Inf. Theory.

[19]  F. Fairman,et al.  Reduced order state estimators for discrete-time stochastic systems , 1977 .

[20]  O. Bosgra,et al.  The design of dynamic compensators for linear multivariable systems , 1977 .

[21]  Craig S. Sims,et al.  Optimal and suboptimal results in full- and reduced-order linear filtering , 1978 .

[22]  C. Loan Computing integrals involving the matrix exponential , 1978 .

[23]  APPLICATIONS OF PROJECTIVE REDUCTION METHODS TO ESTIMATION AND CONTROL , 1978 .

[24]  David Wilson,et al.  Design of low order estimators using reduced models , 1979 .

[25]  C. Knapp,et al.  Parameter optimization in linear systems with arbitrarily constrained controller structure , 1979 .

[26]  C. Knapp,et al.  Parameter optimization in linear systems with arbitrarily constrained controller structure , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[27]  John O'reilly,et al.  Optimal Low-Order Feedback Controllers for Linear Discrete-Time Systems , 1980 .

[28]  R. Skelton Cost decomposition of linear systems with application to model reduction , 1980 .

[29]  D. Wilson,et al.  A new algorithm for optimal reduction of multivariable systems , 1980 .

[30]  N. Sandell,et al.  Gradient calculations for linear quadratic fixed-control structure problems , 1980 .

[31]  Model Reduction by Euclidean Methods , 1980 .

[32]  M. J. Grimble Reduced-order optimal controller for discrete-time stochastic systems , 1980 .

[33]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[34]  Eduard Eitelberg Model reduction by minimizing the weighted equation error , 1981 .

[35]  Robert E. Skelton,et al.  Component Cost Analysis of Large-Scale Systems , 1982 .

[36]  D. Hyland,et al.  Mean-square optimal, fixed-order compensation - Beyond spillover suppression , 1982 .

[37]  D. Hyland,et al.  Optimality conditions for fixed-order dynamic compensation of flexible spacecraft with uncertain parameters , 1982 .

[38]  Craig S. Sims,et al.  Reduced-Order Modeling and Filtering , 1982 .

[39]  R. Skelton,et al.  Component cost analysis of large scale systems , 1983 .

[40]  D. Hyland,et al.  The optimal projection approach to fixed-order compensation - Numerical methods and illustrative results , 1983 .

[41]  R. Longman,et al.  An Integrated Approach To Reduced-order Control-theory , 1983 .

[42]  D. C. Hyland,et al.  Fixed-order dynamic compensation through optimal projection , 1983 .

[43]  Dennis Bernstein,et al.  Explicit optimality conditions for fixed-order dynamic compensation , 1983, The 22nd IEEE Conference on Decision and Control.

[44]  D. C. Hyland,et al.  COMPARISON OF VARIOUS CONTROLLER-REDUCTION METHODS: SUBOPTIMAL VERSUS OPTIMAL PROJECTION , 1984 .

[45]  Dennis Bernstein,et al.  The optimal projection approach to model reduction and the relationship between the methods of Wilson and Moore , 1984, The 23rd IEEE Conference on Decision and Control.

[46]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[47]  R. Skelton,et al.  Controller reduction by component cost analysis , 1984 .

[48]  D. Bernstein,et al.  The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton, and Moore , 1985 .

[49]  D. Bernstein,et al.  The optimal projection equations for reduced-order state estimation , 1985 .

[50]  Dennis S. Bernstein,et al.  The Optimal Projection Equations for Reduced-Order State Estimation , 1985, 1985 American Control Conference.

[51]  D. Bernstein,et al.  The optimal projection equations for finite-dimensional fixed-order dynamic compensation of infinite-dimensional systems , 1986 .

[52]  D. Bernstein,et al.  The optimal projection equations for reduced-order, discrete-time modeling, estimation, and control , 1986 .