Singular polarimetry: evolution of polarization singularities in electromagnetic waves propagating in a weakly anisotropic medium.

We describe the evolution of a paraxial electromagnetic wave characterizing by a non-uniform polarization distribution with singularities and propagating in a weakly anisotropic medium. Our approach is based on the Stokes vector evolution equation applied to a non-uniform initial polarization field. In the case of a homogeneous medium, this equation is integrated analytically. This yields a 3-dimensional distribution of the polarization parameters containing singularities, i.e. C-lines of circular polarization and L-surfaces of linear polarization. The general theory is applied to specific examples of the unfolding of a vectorial vortex in birefringent and dichroic media.

[1]  Y. Kravtsov,et al.  Stokes-vector evolution in a weakly anisotropic inhomogeneous medium. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  A. Kiselev Singularities in polarization resolved angular patterns: transmittance of nematic liquid crystal cells , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Y. Kravtsov,et al.  Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium , 2007, physics/0701213.

[4]  Mark R Dennis,et al.  Stokes parameters in the unfolding of an optical vortex through a birefringent crystal. , 2006, Optics express.

[5]  R. Botet,et al.  Novel Aspects of Evolution of the Stokes Parameters for an Electromagnetic Wave in Anisotropic Media , 2006 .

[6]  Erez Hasman,et al.  Manipulation of the Pancharatnam phase in vectorial vortices. , 2006, Optics express.

[7]  K. Bliokh Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect. , 2006, Physical review letters.

[8]  Mark R. Dennis,et al.  Polarization singularities from unfolding an optical vortex through a birefringent crystal. , 2005, Physical review letters.

[9]  Mark R. Dennis,et al.  Polarization singularities in paraxial vector fields: morphology and statistics , 2002 .

[10]  I. Freund Polarization singularity indices in Gaussian laser beams , 2002 .

[11]  Jan Masajada,et al.  Optical vortex generation by three plane wave interference , 2001 .

[12]  S. Segre New formalism for the analysis of polarization evolution for radiation in a weakly nonuniform, fully anisotropic medium: a magnetized plasma. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Mark R. Dennis,et al.  Polarization singularities in isotropic random vector waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  H. Kuratsuji,et al.  Maxwell-Schrödinger Equation for Polarized Light and Evolution of the Stokes Parameters , 1997, cond-mat/9707332.

[15]  Young S. Kim,et al.  Polarization optics and bilinear representation of the Lorentz group , 1996 .

[16]  Charles S. Brown,et al.  Unified formalism for polarization optics with application to polarimetry on a twisted optical fiber , 1995 .

[17]  C. Brosseau,et al.  Evolution of the Stokes parameters in optically anisotropic media. , 1995, Optics letters.

[18]  J. Peřina,et al.  Non-image-forming polarization optical devices and Lorentz transformations — an analogy , 1993 .

[19]  Isaac Freund,et al.  Optical dislocation networks in highly random media , 1993 .

[20]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[21]  J. F. Nye,et al.  The wave structure of monochromatic electromagnetic radiation , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  John F Nye,et al.  Lines of circular polarization in electromagnetic wave fields , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  R. Simon The connection between Mueller and Jones matrices of polarization optics , 1982 .

[24]  R. Barakat Bilinear constraints between elements of the 4 x 4 Mueller-Jones transfer matrix of polarization theory , 1981 .

[25]  K. Haller Quantum Electrodynamics , 1979, Nature.

[26]  Rasheed M. A. Azzam,et al.  Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus , 1978 .

[27]  L. J. Cox Ellipsometry and Polarized Light , 1978 .

[28]  S. Barnett,et al.  Orbital angular momentum of light , 2007 .

[29]  G. Biener,et al.  Chapter 4 – Space-variant polarization manipulation , 2005 .

[30]  G. Biener,et al.  Space-variant polarization manipulation , 2005 .

[31]  Michael Mishchenko,et al.  Fundamentals of Polarized Light , 2003 .

[32]  John F Nye,et al.  Natural focusing and fine structure of light: caustics and wave dislocations , 1999 .

[33]  J. W. Humberston Classical mechanics , 1980, Nature.