A likelihood-based approach for multivariate categorical response regression in high dimensions
暂无分享,去创建一个
[1] Jieping Ye,et al. Efficient Methods for Overlapping Group Lasso , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[2] Noah Simon,et al. A Sparse-Group Lasso , 2013 .
[3] Volkan Cevher,et al. Composite Convex Minimization Involving Self-concordant-Like Cost Functions , 2015, MCO.
[4] Adam J. Rothman,et al. Shrinking characteristics of precision matrix estimators , 2017, 1704.04820.
[5] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[6] Eyke Hüllermeier,et al. On the Problem of Error Propagation in Classifier Chains for Multi-label Classification , 2012, GfKl.
[7] P. McCullagh,et al. Multivariate Logistic Models , 1995 .
[8] P. McCullagh,et al. Generalized Linear Models , 1992 .
[9] Alan Agresti,et al. Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.
[10] Yi Yang,et al. Multiclass Sparse Discriminant Analysis , 2015, 1504.05845.
[11] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[12] J. Serth,et al. Caveolin 1 protein expression in renal cell carcinoma predicts survival , 2011, BMC urology.
[13] Eyke Hüllermeier,et al. Dependent binary relevance models for multi-label classification , 2014, Pattern Recognit..
[14] Jean-Philippe Vert,et al. Group Lasso with Overlaps: the Latent Group Lasso approach , 2011, ArXiv.
[15] Niels Richard Hansen,et al. Sparse group lasso and high dimensional multinomial classification , 2012, Comput. Stat. Data Anal..
[16] T. Hastie,et al. Classification of gene microarrays by penalized logistic regression. , 2004, Biostatistics.
[17] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[18] J. Anderson. Regression and Ordered Categorical Variables , 1984 .
[19] Kenneth Lange,et al. MM optimization algorithms , 2016 .
[20] Grigorios Tsoumakas,et al. Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..
[21] Bradley S. Price,et al. Automatic Response Category Combination in Multinomial Logistic Regression , 2017, Journal of Computational and Graphical Statistics.
[22] Yucheng Dong,et al. A Unified Framework , 2018, Linguistic Decision Making.
[23] Geoff Holmes,et al. Classifier Chains for Multi-label Classification , 2009, ECML/PKDD.
[24] Huan Li,et al. Accelerated Proximal Gradient Methods for Nonconvex Programming , 2015, NIPS.
[25] A. Agresti. Categorical data analysis , 1993 .
[26] Eyke Hüllermeier,et al. Rectifying Classifier Chains for Multi-Label Classification , 2019, LWA.
[27] Trevor Hastie,et al. Nuclear penalized multinomial regression with an application to predicting at bat outcomes in baseball , 2018, Statistical modelling.
[28] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[29] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[30] B. Qaqish,et al. Multivariate logistic models , 2006 .
[31] Wei Sun,et al. Gaussian process regression for survival time prediction with genome-wide gene expression. , 2018, Biostatistics.
[32] Francis R. Bach,et al. Self-concordant analysis for logistic regression , 2009, ArXiv.
[33] Martin J. Wainwright,et al. Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..
[34] J. Bien,et al. Hierarchical Sparse Modeling: A Choice of Two Group Lasso Formulations , 2015, 1512.01631.
[35] Xin Geng,et al. Binary relevance for multi-label learning: an overview , 2018, Frontiers of Computer Science.