Precursor microRNA-programmed silencing complex assembly pathways in mammals.

[1]  Tomoko Kawamata,et al.  Multilayer checkpoints for microRNA authenticity during RISC assembly , 2011, EMBO reports.

[2]  J. Doudna,et al.  siRNA repositioning for guide strand selection by human Dicer complexes. , 2011, Molecular cell.

[3]  P. Zamore,et al.  A 5′-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation , 2011, Silence.

[4]  Olivier Voinnet,et al.  Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels , 2011, Nature Structural &Molecular Biology.

[5]  R. Green,et al.  A Parsimonious Model for Gene Regulation by miRNAs , 2011, Science.

[6]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[7]  E. Lai,et al.  Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis , 2010, Proceedings of the National Academy of Sciences.

[8]  M. Siomi,et al.  A direct role for Hsp90 in pre-RISC formation in Drosophila , 2010, Nature Structural &Molecular Biology.

[9]  Tsutomu Suzuki,et al.  Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. , 2010, Molecular cell.

[10]  M. Ishikawa,et al.  In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. , 2010, Molecular cell.

[11]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[12]  N. Sonenberg,et al.  Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2 , 2010, Nature.

[13]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[14]  Jennifer A. Doudna,et al.  Structural insights into RNA Processing by the Human RISC-Loading Complex , 2009, Nature Structural &Molecular Biology.

[15]  Michael T. McManus,et al.  Expanded RNA-binding activities of mammalian Argonaute 2 , 2009, Nucleic acids research.

[16]  P. Khaitovich,et al.  Sequence features associated with microRNA strand selection in humans and flies , 2009, BMC Genomics.

[17]  H. Seitz,et al.  Structural determinants of miRNAs for RISC loading and slicer-independent unwinding , 2009, Nature Structural &Molecular Biology.

[18]  K. Luebke Faculty Opinions recommendation of The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. , 2009 .

[19]  M. Siomi,et al.  Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. , 2009, RNA: A publication of the RNA Society.

[20]  M. Siomi,et al.  On the road to reading the RNA-interference code , 2009, Nature.

[21]  J. Belasco,et al.  Importance of Translation and Nonnucleolytic Ago Proteins for On-Target RNA Interference , 2008, Current Biology.

[22]  Kiyoshi Asai,et al.  Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing , 2008, Proceedings of the National Academy of Sciences.

[23]  Jennifer A. Doudna,et al.  In vitro reconstitution of the human RISC-loading complex , 2008, Proceedings of the National Academy of Sciences.

[24]  D. Haber,et al.  Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression , 2007, Cell.

[25]  Shigeyuki Yokoyama,et al.  Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. , 2007, Genes & development.

[26]  Takashi Sasaki,et al.  Evolutionary conservation of a unique amino acid sequence in human DICER protein essential for binding to Argonaute family proteins. , 2007, Gene.

[27]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[28]  Stefan L Ameres,et al.  Cleavage of the siRNA passenger strand during RISC assembly in human cells , 2006, EMBO reports.

[29]  Z. Mourelatos,et al.  A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. , 2005, Genes & development.

[30]  M. Siomi,et al.  Slicer function of Drosophila Argonautes and its involvement in RISC formation. , 2005, Genes & development.

[31]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[32]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[33]  Xiaodong Wang,et al.  Argonaute2 Cleaves the Anti-Guide Strand of siRNA during RISC Activation , 2005, Cell.

[34]  Michael T. McManus,et al.  The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[36]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[37]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[38]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[39]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[40]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[41]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[42]  Eric Westhof,et al.  Single Processing Center Models for Human Dicer and Bacterial RNase III , 2004, Cell.

[43]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[44]  T. Du,et al.  RISC Assembly Defects in the Drosophila RNAi Mutant armitage , 2004, Cell.

[45]  W. Filipowicz,et al.  Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer , 2004, EMBO reports.

[46]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[47]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[48]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[49]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[50]  P. Zamore,et al.  ATP Requirements and Small Interfering RNA Structure in the RNA Interference Pathway , 2001, Cell.

[51]  B. Bass,et al.  A Role for the RNase III Enzyme DCR-1 in RNA Interference and Germ Line Development in Caenorhabditis elegans , 2001, Science.

[52]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[53]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[54]  Emily Bernstein,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[55]  Z. Paroo,et al.  ATP-dependent human RISC assembly pathways , 2010, Nature Structural &Molecular Biology.

[56]  Y. Tomari,et al.  Making RISC. , 2010, Trends in biochemical sciences.

[57]  M. A. Rector,et al.  References and Notes Materials and Methods Som Text Fig. S1 Table S1 References a Microrna in a Multiple- Turnover Rnai Enzyme Complex , 2022 .