Computational development of the nanoporous materials genome

The discovery of nanoporous materials is now being propelled by the analysis of big data combined with traditional computational thermodynamics calculations. In this Review, we analyse the current state of the art, with a focus on the generation of computational databases…

[1]  Louis Vanduyfhuys,et al.  QuickFF: A program for a quick and easy derivation of force fields for metal‐organic frameworks from ab initio input , 2015, J. Comput. Chem..

[2]  Peter G. Boyd,et al.  Force-Field Prediction of Materials Properties in Metal-Organic Frameworks , 2016, The journal of physical chemistry letters.

[3]  Watchareeya Kaveevivitchai,et al.  Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs. , 2015, Angewandte Chemie.

[4]  Chongli Zhong,et al.  Large‐scale computational screening of metal‐organic frameworks for CH4/H2 separation , 2012 .

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[7]  Diego A. Gómez-Gualdrón,et al.  The materials genome in action: identifying the performance limits for methane storage , 2015 .

[8]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[9]  T. K. Roy,et al.  MOF‐FF – A flexible first‐principles derived force field for metal‐organic frameworks , 2013 .

[10]  T. Heine,et al.  AuToGraFS: automatic topological generator for framework structures. , 2014, The journal of physical chemistry. A.

[11]  Eric F. May,et al.  The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies , 2012 .

[12]  Michael O'Keeffe,et al.  Taxonomy of periodic nets and the design of materials. , 2007, Physical chemistry chemical physics : PCCP.

[13]  Vladislav A. Blatov,et al.  Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database , 2004 .

[14]  Yongjin Lee,et al.  Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks , 2016 .

[15]  Randall Q. Snurr,et al.  Structure–property relationships of porous materials for carbon dioxide separation and capture , 2012 .

[16]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[17]  Christodoulos A Floudas,et al.  Computational characterization of zeolite porous networks: an automated approach. , 2011, Physical chemistry chemical physics : PCCP.

[18]  P. Eng CO2 emissions from fuel combustion: highlights , 2009 .

[19]  Richard L. Martin,et al.  Large-scale computational screening of zeolites for ethane/ethene separation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[20]  R. Banerjee,et al.  Structural Isomerism and Effect of Fluorination on Gas Adsorption in Copper-Tetrazolate Based Metal Organic Frameworks , 2011 .

[21]  Jihan Kim,et al.  Predicting low-k zeolite materials , 2014 .

[22]  A. Chaffee,et al.  Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks , 2015 .

[23]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[24]  Fengqi You,et al.  In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm , 2016, Science Advances.

[25]  Li-Chiang Lin,et al.  Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. , 2012, Journal of the American Chemical Society.

[26]  O. Yaghi,et al.  Three-periodic nets and tilings: minimal nets. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[27]  Jianwen Jiang,et al.  High-throughput computational screening of 137953 metal–organic frameworks for membrane separation of a CO2/N2/CH4 mixture , 2016 .

[28]  Jack D. Evans,et al.  Computational identification of organic porous molecular crystals , 2016 .

[29]  Randall Q. Snurr,et al.  Evaluation of Force Field Performance for High-Throughput Screening of Gas Uptake in Metal–Organic Frameworks , 2015 .

[30]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[31]  David S Sholl,et al.  Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials. , 2010, Journal of chemical theory and computation.

[32]  Li-Chiang Lin,et al.  Optimizing nanoporous materials for gas storage. , 2014, Physical chemistry chemical physics : PCCP.

[33]  Richard L. Martin,et al.  In silico prediction of MOFs with high deliverable capacity or internal surface area. , 2015, Physical chemistry chemical physics : PCCP.

[34]  Jihan Kim,et al.  Understanding the Mechanisms of CO2 Adsorption Enhancement in Pure Silica Zeolites under Humid Conditions , 2016 .

[35]  Diego A. Gómez-Gualdrón,et al.  Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage , 2016 .

[36]  Li-Chiang Lin,et al.  Large-scale screening of zeolite structures for CO2 membrane separations. , 2013, Journal of the American Chemical Society.

[37]  Christodoulos A Floudas,et al.  Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[38]  C. Wilmer,et al.  Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration , 2011 .

[39]  Randall Q Snurr,et al.  Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.

[40]  Paweł Dłotko,et al.  Quantifying similarity of pore-geometry in nanoporous materials , 2017, Nature Communications.

[41]  Zhengjie Li,et al.  Computational exploration of metal–organic frameworks for CO2/CH4 separation via temperature swing adsorption , 2014 .

[42]  Maciej Haranczyk,et al.  Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .

[43]  Michael Fernandez,et al.  Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure. , 2016, ACS combinatorial science.

[44]  Gérard Férey,et al.  De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method) , 2000 .

[45]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .

[46]  G. Versteeg,et al.  CO2 capture from power plants. Part I: A parametric study of the technical performance based on monoethanolamine , 2007 .

[47]  Seda Keskin,et al.  Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[48]  Subhash Bhatia,et al.  Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials , 2012 .

[49]  Sankar Nair,et al.  Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges. , 2012, Journal of the American Chemical Society.

[50]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[51]  Aron Walsh,et al.  A general forcefield for accurate phonon properties of metal-organic frameworks. , 2016, Physical chemistry chemical physics : PCCP.

[52]  David S Sholl,et al.  Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[53]  B. Smit,et al.  Efficient Determination of Accurate Force Fields for Porous Materials Using ab Initio Total Energy Calculations , 2014 .

[54]  David S. Sholl,et al.  Identification of Metal–Organic Framework Materials for Adsorption Separation of Rare Gases: Applicability of Ideal Adsorbed Solution Theory (IAST) and Effects of Inaccessible Framework Regions , 2012 .

[55]  Jianwen Jiang,et al.  In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO2 separation , 2016 .

[56]  G. Sastre,et al.  Screening of hypothetical metal-organic frameworks for H2 storage. , 2014, Physical chemistry chemical physics : PCCP.

[57]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[58]  Paul D Lyne,et al.  Structure-based virtual screening: an overview. , 2002, Drug discovery today.

[59]  Jeffrey S. Camp,et al.  A Comprehensive Set of High-Quality Point Charges for Simulations of Metal–Organic Frameworks , 2016 .

[60]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[61]  S. Rogge,et al.  Exploring the Flexibility of MIL-47(V)-Type Materials Using Force Field Molecular Dynamics Simulations , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[62]  T. Heine,et al.  Extension of the Universal Force Field for Metal-Organic Frameworks. , 2016, Journal of chemical theory and computation.

[63]  Maciej Haranczyk,et al.  History and Utility of Zeolite Framework-Type Discovery from a Data-Science Perspective , 2016 .

[64]  A. Cheetham,et al.  Mechanical Properties of Hybrid Inorganic—Organic Framework Materials: Establishing Fundamental Structure—Property Relationships , 2011 .

[65]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[66]  M. Allendorf,et al.  The interaction of water with MOF-5 simulated by molecular dynamics. , 2006, Journal of the American Chemical Society.

[67]  Tom K Woo,et al.  Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional. , 2009, Journal of chemical theory and computation.

[68]  P. A. Cheeseman,et al.  Computational Discovery of New Zeolite-Like Materials , 2009 .

[69]  J. Marrot,et al.  VIII(OH)[O2C-C6H4-CO2].(HO2C-C6H4-CO2H)x(DMF)y(H2O)z(or MIL-68), a new vanadocarboxylate with a large pore hybrid topology: reticular synthesis with infinite inorganic building blocks? , 2004, Chemical communications.

[70]  Maciej Haranczyk,et al.  In silico design of porous polymer networks: high-throughput screening for methane storage materials. , 2014, Journal of the American Chemical Society.

[71]  Randall Q Snurr,et al.  An Extended Charge Equilibration Method. , 2012, The journal of physical chemistry letters.

[72]  François-Xavier Coudert,et al.  Hydrothermal Breakdown of Flexible Metal-Organic Frameworks: A Study by First-Principles Molecular Dynamics. , 2015, The journal of physical chemistry letters.

[73]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[74]  Peter G. Boyd,et al.  A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory , 2016 .

[75]  A. Maiti,et al.  New materials for methane capture from dilute and medium-concentration sources , 2013, Nature Communications.

[76]  Randall Q. Snurr,et al.  Efficient identification of hydrophobic MOFs: application in the capture of toxic industrial chemicals , 2016 .

[77]  Thermodynamic screening of metal-substituted MOFs for carbon capture. , 2013, Physical chemistry chemical physics : PCCP.

[78]  H. Ohno,et al.  Machine Learning Approach for Prediction and Search: Application to Methane Storage in a Metal–Organic Framework , 2016 .

[79]  Randall Q. Snurr,et al.  High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature , 2014 .

[80]  Richard L. Martin,et al.  Optimization-Based Design of Metal-Organic Framework Materials. , 2013, Journal of chemical theory and computation.

[81]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[82]  O. Yaghi,et al.  Structures of Metal-Organic Frameworks with Rod Secondary Building Units. , 2016, Chemical reviews.

[83]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[84]  Tom K. Woo,et al.  Quantitative Structure–Property Relationship Models for Recognizing Metal Organic Frameworks (MOFs) with High CO2 Working Capacity and CO2/CH4 Selectivity for Methane Purification , 2016 .

[85]  C. Wilmer,et al.  Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks , 2012 .

[86]  Jeffrey S. Camp,et al.  Large-Scale Refinement of Metal−Organic Framework Structures Using Density Functional Theory , 2017 .

[87]  A. Walsh,et al.  Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF , 2014, Journal of chemical theory and computation.

[88]  Dong-Hun Kim,et al.  High-Throughput Screening to Investigate the Relationship between the Selectivity and Working Capacity of Porous Materials for Propylene/Propane Adsorptive Separation , 2016 .

[89]  Craig M. Brown,et al.  Critical Factors Driving the High Volumetric Uptake of Methane in Cu₃(btc)₂. , 2015, Journal of the American Chemical Society.

[90]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[91]  T. Heine,et al.  Extension of the Universal Force Field to Metal-Organic Frameworks. , 2014, Journal of chemical theory and computation.

[92]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[93]  Diego A. Gómez-Gualdrón,et al.  Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. , 2015, Journal of the American Chemical Society.

[94]  R. Snurr,et al.  Textural properties of a large collection of computationally constructed MOFs and zeolites , 2014 .

[95]  Maciej Haranczyk,et al.  In Silico Discovery of High Deliverable Capacity Metal–Organic Frameworks , 2015 .

[96]  Michael O'Keeffe,et al.  Crystal nets as graphs: Terminology and definitions , 2005 .

[97]  Craig M. Brown,et al.  Methane storage in flexible metal–organic frameworks with intrinsic thermal management , 2015, Nature.

[98]  N. López,et al.  How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family. , 2013, Physical chemistry chemical physics : PCCP.

[99]  Jesse G. McDaniel,et al.  Robust, Transferable, and Physically Motivated Force Fields for Gas Adsorption in Functionalized Zeolitic Imidazolate Frameworks , 2012 .

[100]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[101]  J. M. Newsam,et al.  Determination of 4-connected framework crystal structures by simulated annealing , 1989, Nature.

[102]  Lev Sarkisov,et al.  Computational structure characterisation tools in application to ordered and disordered porous materials , 2011 .

[103]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[104]  Yamil J. Colón,et al.  High-throughput computational screening of metal-organic frameworks. , 2014, Chemical Society reviews.

[105]  Maciej Haranczyk,et al.  In Silico Design of Three-Dimensional Porous Covalent Organic Frameworks via Known Synthesis Routes and Commercially Available Species , 2014 .

[106]  Michael W Deem,et al.  A database of new zeolite-like materials. , 2011, Physical chemistry chemical physics : PCCP.

[107]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[108]  Diego A. Gómez-Gualdrón,et al.  Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials , 2017 .

[109]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[110]  Maciej Haranczyk,et al.  The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials , 2017, Journal of the American Chemical Society.

[111]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[112]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[113]  Tom K. Woo,et al.  Fast and accurate electrostatics in metal organic frameworks with a robust charge equilibration parameterization for high-throughput virtual screening of gas adsorption , 2013 .

[114]  Richard L. Martin,et al.  Construction and Characterization of Structure Models of Crystalline Porous Polymers , 2014 .

[115]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[116]  Hong‐Cai Zhou,et al.  Tuning the Moisture and Thermal Stability of Metal–Organic Frameworks through Incorporation of Pendant Hydrophobic Groups , 2013 .

[117]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[118]  Steven Skiena,et al.  The Algorithm Design Manual , 2020, Texts in Computer Science.

[119]  Randall Q. Snurr,et al.  Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks , 2013 .

[120]  Tom K. Woo,et al.  Atomic Property Weighted Radial Distribution Functions Descriptors of Metal–Organic Frameworks for the Prediction of Gas Uptake Capacity , 2013 .

[121]  Richard L. Martin,et al.  haracterization and comparison of pore landscapes in crystalline orous materials , 2013 .

[122]  Richard L. Martin,et al.  Exploring frontiers of high surface area metal–organic frameworks , 2013 .

[123]  Peter G. Boyd,et al.  Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO 2 Capture , 2014 .

[124]  Diego A. Gómez-Gualdrón,et al.  Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials , 2014 .

[125]  Gérard Férey,et al.  Hybrid organic-inorganic frameworks: routes for computational design and structure prediction. , 2004, Angewandte Chemie.

[126]  Richard L. Martin,et al.  On the flexibility of metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[127]  Maciej Haranczyk,et al.  What Are the Best Materials To Separate a Xenon/Krypton Mixture? , 2015 .

[128]  Tom K Woo,et al.  Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture. , 2014, The journal of physical chemistry letters.

[129]  Santi Kulprathipanja,et al.  Zeolites in industrial separation and catalysis , 2010 .

[130]  J. S. Abichandani,et al.  Computational Identification and Experimental Evaluation of Metal–Organic Frameworks for Xylene Enrichment , 2016 .

[131]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[132]  L. Wüllen,et al.  A zeolitic imidazolate framework with conformational variety: conformational polymorphs versus frameworks with static conformational disorder , 2016 .

[133]  Peng Bai,et al.  Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling , 2015, Nature Communications.

[134]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[135]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[136]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[137]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[138]  Yongchul G. Chung,et al.  High-Throughput Screening of Metal-Organic Frameworks for CO2 Capture in the Presence of Water. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[139]  David S Sholl,et al.  Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials. , 2012, Journal of chemical theory and computation.

[140]  Seda Keskin,et al.  Molecular simulations of MOF adsorbents and membranes for noble gas separations , 2017 .

[141]  C. Serre,et al.  Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks. , 2017, ChemSusChem.

[142]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[143]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[144]  Yongjin Lee,et al.  Pore-geometry recognition: on the importance of quantifying similarity in nanoporous materials , 2017, 1701.06953.

[145]  Matthew R. Hill,et al.  Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage , 2017, Chemistry of materials : a publication of the American Chemical Society.

[146]  Jianzhong Wu,et al.  Seeking metal–organic frameworks for methane storage in natural gas vehicles , 2015, Adsorption.

[147]  Li-Chiang Lin,et al.  Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules , 2013 .

[148]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[149]  Jiayi Chen,et al.  High-Throughput Screening of Metal-Organic Frameworks for Hydrogen Storage at Cryogenic Temperature , 2016 .

[150]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[151]  Gérard Férey,et al.  Computational Design and Prediction of Interesting Not‐Yet‐Synthesized Structures of Inorganic Materials by Using Building Unit Concepts , 2002 .

[152]  Maciej Haranczyk,et al.  Metal–organic framework with optimally selective xenon adsorption and separation , 2016, Nature Communications.

[153]  Chongli Zhong,et al.  Revealing the structure-property relationship of covalent organic frameworks for CO₂ capture from postcombustion gas: a multi-scale computational study. , 2014, Physical chemistry chemical physics : PCCP.

[154]  Li-Chiang Lin,et al.  High-throughput computational screening of nanoporous adsorbents for CO2 capture from natural gas , 2016 .

[155]  Wenchuan Wang,et al.  Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. , 2015, Journal of the American Chemical Society.

[156]  Danielle F. Kennedy,et al.  Towards computational design of zeolite catalysts for CO2 reduction , 2015 .

[157]  R. Krishna,et al.  In silico screening of metal-organic frameworks in separation applications. , 2011, Physical chemistry chemical physics : PCCP.