Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection

This article presents design issues of high-sensitive laser absorption spectroscopy systems for nitrogen oxides (NOx) detection. Examples of our systems and their investigation results are also described. The constructed systems use one of the most sensitive methods, cavity enhanced absorption spectroscopy (CEAS). They operate at different wavelength ranges using a blue—violet laser diode (410 nm) as well as quantum cascade lasers (5.27 μm and 4.53 μm). Each of them is configured as a one or two channel measurement device using, e.g., time division multiplexing and averaging. During the testing procedure, the main performance features such as detection limits and measurements uncertainties have been determined. The obtained results are 1 ppb NO2, 75 ppb NO and 45 ppb N2O. For all systems, the uncertainty of concentration measurements does not exceed a value of 13%. Some experiments with explosives are also discussed. A setup equipped with a concentrator of explosives vapours was used. The detection method is based either on the reaction of the sensors to the nitrogen oxides directly emitted by the explosives or on the reaction to the nitrogen oxides produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX and HMX a detection limit better than 1 ng has been achieved.

[1]  Bora M. Onat,et al.  A solid-state hyperspectral imager for real-time standoff explosives detection using shortwave infrared imaging , 2009 .

[2]  J. Shao,et al.  The Highly Sensitive Detection of NO Using FAMOS by a Fully-Diode-Laser-Based UV System , 2010, 2010 4th International Conference on Bioinformatics and Biomedical Engineering.

[3]  D. Romanini,et al.  Sub-ppb NO2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser , 2006 .

[4]  Roland Teissier,et al.  High temperature operation of short wavelength InAs-based quantum cascade lasers , 2012 .

[5]  G. Rao,et al.  High sensitivity detection of NO2 using ICOS and MLIAS , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[6]  Manijeh Razeghi,et al.  Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature , 2012 .

[7]  Zbigniew Bielecki,et al.  Sensors and Systems for the Detection of Explosive Devices - An Overview , 2012 .

[8]  David S. Moore,et al.  Recent Advances in Trace Explosives Detection Instrumentation , 2007 .

[9]  Stefan Noel,et al.  Global atmospheric monitoring with SCIAMACHY , 1999 .

[10]  Anthony O'Keefe,et al.  Integrated cavity output analysis of ultra-weak absorption , 1998 .

[11]  Z. Bielecki,et al.  Multispectral Detection Circuits InSpecial Applications , 2009 .

[12]  K. Vodopyanov,et al.  Solid-state mid-infrared laser sources , 2003 .

[13]  Frank K. Tittel,et al.  Sensitive detection of nitric oxide using a 5.26 μm external cavity quantum cascade laser based QEPAS sensor , 2012, OPTO.

[14]  Ma Ángeles Fernández de la Ossa,et al.  Determination of nitrocellulose by capillary electrophoresis with laser-induced fluorescence detection. , 2012, Analytica chimica acta.

[15]  C. Fitzpatrick,et al.  Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques , 2008 .

[16]  K. Shadan,et al.  Available online: , 2012 .

[17]  S. Herndon,et al.  Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy. , 2005, Analytical chemistry.

[18]  Claire F. Gmachl,et al.  High performance “continuum-to-continuum” quantum cascade lasers with a broad gain bandwidth of over 400 cm−1 , 2010 .

[19]  Manijeh Razeghi,et al.  High power, continuous wave, quantum cascade ring laser , 2011 .

[20]  Zbigniew Bielecki,et al.  Cavity enhanced spectroscopy for NO2 detection , 2005, SPIE Optics + Optoelectronics.

[21]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[22]  Hiltmar Schubert,et al.  Detection and disposal of improvised explosives , 2006 .

[23]  P. Ferraro,et al.  Advanced monitoring techniques and coherent sources , 2006 .

[24]  T. Stacewicz,et al.  Towards optoelectronic detection of explosives , 2013 .

[25]  Wei Chen,et al.  Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode , 2009 .

[26]  D. M. Watson,et al.  Solid State Division , 1989 .

[27]  Z. Bielecki,et al.  Cavity Enhanced Absorption Spectroscopy Sensor , 2009 .

[28]  Peter Q. Liu,et al.  Single-mode quantum cascade lasers based on a folded Fabry-Perot cavity , 2011 .

[29]  M. Fraser,et al.  Application of quantum cascade lasers to trace gas analysis , 2008 .

[30]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[31]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[32]  Philip A. Martin,et al.  Stability of widely tuneable, continuous wave external-cavity quantum cascade laser for absorption spectroscopy , 2010 .

[33]  T. Fritsch,et al.  Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath , 2009 .

[34]  J. J. Laserna,et al.  New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy , 2011 .

[35]  Khosrow Namjou,et al.  Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation. , 2002, Applied optics.

[36]  Gerard Wysocki,et al.  External-cavity quantum cascade lasers with fast wavelength scanning , 2010 .

[37]  F. Capasso,et al.  Quantum cascade lasers in chemical physics , 2010 .

[38]  Seungyong Jung,et al.  Optically tunable long wavelength infrared quantum cascade laser operated at room temperature , 2013 .

[39]  G. Strasser,et al.  Light-induced tuning of quantum cascade lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[40]  J G Anderson,et al.  Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. , 2001, Applied optics.

[41]  P. O. Hulth,et al.  Optical properties of deep glacial ice at the South Pole , 2006 .

[42]  J. Fourier Sub-ppb NO 2 detection by optical feedback cavity-enhanced absorption spectroscopy with a blue diode laser , 2006 .

[43]  A. Rogalski,et al.  MOCVD growth of Hg₁₋xCdxTe heterostructures for uncooled infrared photodetectors , 2004 .

[44]  N. Palka Spectroscopy of Explosive Materials in the THz Range , 2010 .

[45]  T. Stacewicz,et al.  Ultrasensitive laser spectroscopy for breath analysis , 2012 .

[46]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[47]  Zbigniew Bielecki,et al.  Cavity Ring Down Spectroscopy: detection of trace amounts of matter , 2012 .

[48]  F. Capasso,et al.  Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. , 2001, Applied optics.

[49]  李幼升,et al.  Ph , 1989 .

[50]  Lijun Wang,et al.  Improved performance of quantum cascade laser with porous waveguide structure , 2012 .

[51]  A. Cho,et al.  Simultaneously at two wavelengths (5.0 and 7.5 /spl mu/m) singlemode and tunable quantum cascade distributed feedback lasers , 2002 .

[52]  Zbigniew Bielecki,et al.  Application of an optical parametric generator to cavity enhanced experiment , 2010, Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (WILGA).

[53]  Z. Bielecki,et al.  Signal processing system in cavity enhanced spectroscopy , 2008 .

[54]  V. L. Kasyutich,et al.  Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers , 2002 .

[55]  Z. Bielecki Maximisation of signal-to-noise ratio in infrared radiation receivers , 2002 .

[56]  R. Maulini Broadly Tunable Mid-Infrared Quantum Cascade Lasers: For spectroscopic applications , 2009 .

[57]  Zbigniew Bielecki,et al.  Sensitive detection of NO 2 with cavity enhanced spectroscopy , 2006 .

[58]  Baohua Gu,et al.  Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy , 2010 .

[59]  A. Wittmann,et al.  Broadband Distributed-Feedback Quantum Cascade Laser Array Operating From 8.0 to 9.8 $\mu$ m , 2009, IEEE Photonics Technology Letters.

[60]  Manish Gupta,et al.  Sensitive absorption measurements in the near-infrared region using off-axis integrated cavity output spectroscopy , 2002, SPIE Optics + Photonics.

[61]  Two-Channel Optoelectronic Sensor Employing Cavity Enhanced Absorption Spectroscopy , 2011 .

[62]  A. Lagalante Atomic Absorption Spectroscopy: A Tutorial Review* , 2004 .

[63]  M. Sigrist Air monitoring by spectroscopic techniques , 1994 .

[64]  K. Shi,et al.  Optical scattering spectroscopy by using tightly focused supercontinuum. , 2005, Optics express.

[65]  Antoni Rogalski,et al.  History of infrared detectors , 2012 .

[66]  A. Ravishankara,et al.  Measurement of atmospheric NO2 by pulsed cavity ring-down spectroscopy , 2006 .

[67]  Ronald K. Hanson,et al.  Wavelength-modulation-spectroscopy for real-time, in situ NO detection in combustion gases with a 5.2 μm quantum-cascade laser , 2012 .

[68]  Ksenia A. Fedorova,et al.  InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 μm , 2013 .

[69]  Manijeh Razeghi,et al.  High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers , 2012 .

[70]  J. Wojtas Detection of Optical Radiation in NOx Optoelectronic Sensors Employing Cavity Enhanced Absorption Spectroscopy , 2011 .

[71]  M. Allen,et al.  Ultrasensitive, visible tunable diode laser detection of NO(2). , 1996, Applied optics.

[72]  Alexander Zybin,et al.  Diode laser atomic absorption spectrometry , 2005 .

[73]  Manijeh Razeghi,et al.  2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers , 2011 .

[74]  Frank K. Tittel,et al.  Mid-Infrared Laser Applications in Spectroscopy , 2003 .

[75]  S. Höfling,et al.  Widely tunable quantum cascade lasers with coupled cavities for gas detection , 2010 .

[76]  S. Herndon,et al.  A practical alternative to chemiluminescence-based detection of nitrogen dioxide: cavity attenuated phase shift spectroscopy. , 2008, Environmental science & technology.

[77]  Zbigniew Bielecki,et al.  Infrared detection module for optoelectronic sensors , 2012, Defense + Commercial Sensing.

[78]  A. Cho,et al.  Spectroscopic detection of biological NO with a quantum cascade laser , 2001, Applied physics. B, Lasers and optics.

[79]  G. Meijer,et al.  Cavity Ringdown Spectroscopy , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[80]  Rudy Peeters,et al.  Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy , 1998 .

[81]  K. Namjou,et al.  Breath-Analysis Using Mid-Infrared Tunable Laser Spectroscopy , 2007, 2007 IEEE Sensors.

[82]  Claire F. Gmachl,et al.  Single-mode quantum cascade lasers employing asymmetric Mach-Zehnder interferometer type cavities , 2012 .

[83]  Y. Jeong,et al.  High-power fiber lasers: progress and opportunities , 2005 .

[84]  Sven Höfling,et al.  Emission wavelength tuning of interband cascade lasers in the 3–4 μm spectral range , 2009 .

[85]  Z. G. Wang,et al.  High temperature operation of edge-emitting photonic-crystal distributed-feedback quantum cascade lasers at λ∼7.6 μm , 2013 .