Energy and Losses in Vector Thermal Aftereffect Model

This work deals with some energy properties of a vector thermal aftereffect model, recently presented. The model can compute magnetization and magnetic losses using an extension in 2-D of a Preisach-type approach. Some properties of the model are presented and discussed. An experimental validation is also included.

[1]  E. Cardelli A General Hysteresis Operator for the Modeling of Vector Fields , 2011, IEEE Transactions on Magnetics.

[2]  E. Cardelli,et al.  Analysis of a Unit Magnetic Particle Via the DPC Model , 2009, IEEE Transactions on Magnetics.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  P. Burrascano,et al.  Numerical Identification Procedure for a Phenomenological Vector Hysteresis Model , 2009, IEEE Transactions on Magnetics.

[5]  E. Cardelli,et al.  Epstein frame: how and when it can be really representative about the magnetic behavior of laminated magnetic steels , 2005, IEEE Transactions on Magnetics.

[6]  J. W. Brown Thermal fluctuation of fine ferromagnetic particles , 1979 .

[7]  R. Street,et al.  A Study of Magnetic Viscosity , 1949 .

[8]  E. Cardelli,et al.  A General Vector Hysteresis Operator: Extension to the 3-D Case , 2010, IEEE Transactions on Magnetics.

[9]  Fabio La Foresta,et al.  State-independent hypothesis to model the behavior of magnetic materials , 2004 .

[10]  L. H. Bennett,et al.  Kerr imaging of a Co/Pt bimodal magneto-optical medium , 1999 .

[11]  Magnetization dependent vector model and single domain nanostructures , 2009 .

[12]  S. Charap,et al.  Physics of magnetism , 1964 .

[13]  Louis Néel,et al.  Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh , 1950 .

[14]  B. Azzerboni,et al.  Mathematical Modelling of Magnetic Hysteresis in Exchange-Bias Spin Valves , 2012, IEEE Transactions on Magnetics.