A meshless Galerkin method for Stokes problems using boundary integral equations

A meshless Galerkin scheme for the simulation of two-dimensional incompressible viscous fluid flows in primitive variables is described in this paper. This method combines a boundary integral formulation for the Stokes equation with the moving least-squares (MLS) approximations for construction of trial and test functions for Galerkin approximations. Unlike the domain-type method, this scheme requires only a nodal structure on the bounding surface of a body for approximation of boundary unknowns, thus it is especially suitable for the exterior problems. Compared to other meshless methods such as the boundary node method and the element free Galerkin method, in which the MLS is also introduced, boundary conditions do not present any difficulty in using this meshless method. The convergence and error estimates of this approach are presented. Numerical examples are also given to show the efficiency of the method.

[1]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[2]  N. Aluru,et al.  A fast boundary cloud method for exterior 2D electrostatic analysis , 2003 .

[3]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[4]  Subrata Mukherjee,et al.  Two-dimensional linear elasticity by the boundary node method , 1999 .

[5]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[6]  John E. Osborn,et al.  Superconvergence in the generalized finite element method , 2007, Numerische Mathematik.

[7]  I. Babuska,et al.  The generalized finite element method , 2001 .

[8]  Xiaolin Li,et al.  A Galerkin boundary node method and its convergence analysis , 2009 .

[9]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[10]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[11]  O. Burggraf Analytical and numerical studies of the structure of steady separated flows , 1966, Journal of Fluid Mechanics.

[12]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[13]  N. Aluru,et al.  Boundary cloud method: a combined scattered point/boundary integral approach for boundary-only analysis , 2002 .

[14]  J. Oden,et al.  H‐p clouds—an h‐p meshless method , 1996 .

[15]  T. E. Voth,et al.  Discretization errors associated with reproducing kernel methods: one-dimensional domains ☆ , 2000 .

[16]  Ivo Babuška,et al.  Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions , 2008 .

[17]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[18]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[19]  N. Aluru,et al.  Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation , 2001 .

[20]  J. Lions,et al.  Integral equations and numerical methods , 2000 .

[21]  Wing Kam Liu,et al.  Moving least-square reproducing kernel method Part II: Fourier analysis , 1996 .

[22]  Wolfgang L. Wendland,et al.  The boundary element method for three-dimensional stokes flows exterior to an open surface , 1991 .

[23]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[24]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[25]  Gang Li,et al.  Positivity conditions in meshless collocation methods , 2004 .

[26]  Yumin Cheng,et al.  Error estimates for the finite point method , 2008 .

[27]  T. Belytschko,et al.  Element-free Galerkin method: Convergence of the continuous and discontinuous shape functions , 1997 .

[28]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[29]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[30]  I. Babuska,et al.  GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE , 2004 .

[31]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[32]  Ivo Babuška,et al.  The generalized finite element method for Helmholtz equation: Theory, computation, and open problems , 2006 .

[33]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[34]  John E. Osborn,et al.  On the approximability and the selection of particle shape functions , 2004, Numerische Mathematik.

[35]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[36]  Carlos Zuppa,et al.  Jackson-type inequalities for h–p clouds and error estimates , 2005 .

[37]  Ted Belytschko,et al.  SINGULAR ENRICHMENT FINITE ELEMENT METHOD FOR ELASTODYNAMIC CRACK PROPAGATION , 2004 .

[38]  A. Cheng,et al.  Boundary element solution for steady and unsteady Stokes flow , 1994 .

[39]  D. L. Young,et al.  Short Note: The method of fundamental solutions for 2D and 3D Stokes problems , 2006 .