Study of Mn incorporation into SAPO framework:Synthesis; characterization and catalysis in chloromethane conversion to light olefins

[1]  Zhongmin Liu,et al.  Synthesis, characterization, and MTO performance of MeAPSO-34 molecular sieves , 2004 .

[2]  Zhongmin Liu,et al.  Mn-Containing AlPO-11 and SAPO-11 Catalysts for Simultaneous Isomerization and Dehydrogenation of n-Butane , 2003 .

[3]  B. Su,et al.  Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations , 2003 .

[4]  M. Hunger,et al.  Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy , 2002 .

[5]  I. Arčon,et al.  Framework cobalt and manganese in MeAPO-31 (Me=Co, Mn) molecular sieves , 2002 .

[6]  B. Su,et al.  Monitoring the Brönsted acidity of zeolites by means of in situ FT-IR and catalytic testing using chloromethane as probe molecule , 2002 .

[7]  József Valyon,et al.  On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite , 2001 .

[8]  Misook Kang,et al.  Methanol conversion on metal-incorporated SAPO-34s (MeAPSO-34s) , 2000 .

[9]  C. Taylor Conversion of substituted methanes over ZSM-catalysts , 2000 .

[10]  B. Su,et al.  Direct catalytic conversion of chloromethane to higher hydrocarbons over various protonic and cationic zeolite catalysts as studied by in-situ FTIR and catalytic testing , 2000 .

[11]  J. M. Campelo,et al.  Analysis of occluded templates in silicoaluminophosphate molecular sieves by high resolution mass spectrometry , 1999 .

[12]  C. López,et al.  The Transformations of n-Butane over Platinum-Promoted Mn-Aluminophosphate Molecular Sieves☆ , 1998 .

[13]  János G. Ángyán,et al.  Brønsted Acid Sites in HSAPO-34 and Chabazite: An Ab Initio Structural Study , 1998 .

[14]  T. Inui High potential of novel zeolitic materials as catalysts for solving energy and environmental problems , 1998 .

[15]  J. Kornatowski,et al.  Decomposition of template in SAPO-5 and AlPO4-5 molecular sieves studied by IR and Raman spectroscopy , 1997 .

[16]  C. Catlow,et al.  Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves , 1997 .

[17]  B. Su,et al.  Characterization of the Brønsted Acid Properties of H(Na)-Beta Zeolite by Infrared Spectroscopy and Thermal Analysis , 1997 .

[18]  S. Kolboe,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 , 1996 .

[19]  A. Cheetham,et al.  A quantitative description of the active sites in the dehydrated acid catalyst HSAPO-34 for the conversion of methanol to olefins , 1996 .

[20]  A. Cheetham,et al.  On the Nature of Water Bound to a Solid Acid Catalyst , 1996, Science.

[21]  D. Akolekar Acidity and catalytic properties of AIPO4-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 molecular sieves , 1995 .

[22]  P. Man,et al.  Influence of the Choice of the Template on the Short- and Long-Term Stability of SAPO-34 Zeolite , 1995 .

[23]  V. Ponec,et al.  Selective isomerisation ofn-butene by crystalline aluminophosphates , 1995 .

[24]  J. M. Campelo,et al.  Pt/SAPO-5 and Pt/SAPO-11 as catalysts for the hydroisomerization and hydrocracking of n-octane , 1995 .

[25]  P. Man,et al.  Reversible interaction of NH3 with the framework of template-free zeolite-type SAPO-34 , 1995 .

[26]  Ivar M. Dahl,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 2. Isotopic Labeling Studies of the Co-reaction of Propene and Methanol , 1994 .

[27]  P. Man,et al.  The Role of the Template in Directing the Si Distribution in SAPO Zeolites , 1994 .

[28]  D. Barthomeuf Topological model for the compared acidity of SAPOs and SiAl zeolites , 1994 .

[29]  J. F. Haw,et al.  METHYL HALIDE REACTIONS ON MULTIFUNCTIONAL METAL-EXCHANGED ZEOLITE CATALYSTS , 1994 .

[30]  S. Chilukuri,et al.  SMALL-PORE MOLECULAR-SIEVES SAPO-34 AND SAPO-44 WITH CHABAZITE STRUCTURE - A STUDY OF SILICON INCORPORATION , 1994 .

[31]  A. Clearfield,et al.  A comparative study of acidic properties of SAPO-5, −11, −34 and −37 molecular sieves , 1994 .

[32]  A. Prakash,et al.  Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template , 1994 .

[33]  P. Man,et al.  Changes in the environment of silicon and aluminum in SAPO-37 zeolite during acidity measurements , 1993 .

[34]  B. Su,et al.  Comparison of the protonic acidity of HY, LZY-82, HSAPO-37, and HEMT: Effect of the structure and of the nature of T atoms , 1993 .

[35]  J. Lunsford,et al.  The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites , 1993 .

[36]  J. F. Haw,et al.  Conversion of methyl halides to hydrocarbons on basic zeolites: a discovery by in situ NMR , 1993 .

[37]  D. Stojaković,et al.  On the possibility of incorporating Mn(II) and Cr(III) in SAPO-34 in the presence of isopropylamine as a template , 1993 .

[38]  P. Man,et al.  Thermal stability of tetrapropylammonium (TPA) and tetra methylammonium (TMA) cations occluded in SAPO-37 molecular sieves , 1993 .

[39]  B. Su,et al.  Acidity and location of cations (H+, Na+) in HEMT and NaEMT determined using benzene adsorption , 1993 .

[40]  B. Su,et al.  Quantitative measurement by infrared spectroscopy of the protonic acidity of H-SAPO-37 and HY using benzene as a probe , 1993 .

[41]  P. Massiani,et al.  Characterization by infrared and nuclear magnetic resonance spectroscopies of calcined beta zeolite , 1993 .

[42]  P. Lersch,et al.  Conversion of chloromethane over metal-exchanged ZSM-5 to higher hydrocarbons , 1991 .

[43]  B. Su,et al.  Oxidizing and reducing properties of SAPO-37 molecular sieve : comparison with acidity and catalysis , 1991 .

[44]  P. Man,et al.  A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis , 1991 .

[45]  C. Minchev,et al.  Thermal decomposition of organic templates in silicoaluminophosphate molecular sieves with various structures , 1991 .

[46]  L. Kustov,et al.  INVESTIGATION OF HYDROXYL GROUPS IN CRYSTALLINE SILICOALUMINOPHOSPHATE SAPO-34 BY DIFFUSE REFLECTANCE INFRARED SPECTROSCOPY , 1991 .

[47]  C. Minchev,et al.  Thermal decomposition of tripropylamine as a template in MeAPO-5 molecular sieves , 1991 .

[48]  R. Kumar,et al.  Characterization of the acidity of zeolite Beta by FTi.r. spectroscopy and t.p.d. of NH3 , 1989 .

[49]  R. P. Noceti,et al.  Direct Conversion of Methane to Liquid Hydrocarbons Through Chlorocarbon Intermediates , 1988 .

[50]  J. Martens,et al.  Crystallization mechanism of zeolite beta from (TEA)2O, Na2O and K2O containing aluminosilicate gels. , 1987 .

[51]  K. Lammertsma,et al.  Electrophilic reactions at single bonds. 20. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and hydrolysis of methyl halides over .gamma.-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl al , 1985 .

[52]  Brent M. T. Lok,et al.  Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids , 1984 .

[53]  T. Barber,et al.  The synthesis and thermal behaviour of zeolite Ω , 1984 .

[54]  D. Bibby,et al.  Thermal decomposition of ZSM-5 and silicalite precursors , 1984 .

[55]  Brent M. T. Lok,et al.  Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids , 1982 .