Ultralow Contact Resistance and Efficient Ohmic Contacts in MoGe2P4–Metal Contacts

[1]  Xiaohui Hu,et al.  Tunable Schottky Barrier and Efficient Ohmic Contacts in MSi2N4 (M = Mo, W)/2D Metal Contacts , 2023, ACS Applied Electronic Materials.

[2]  Litao Sun,et al.  2D PtSe2 Enabled Wireless Wearable Gas Monitoring Circuits with Distinctive Strain-Enhanced Performance. , 2023, ACS nano.

[3]  Litao Sun,et al.  Electric Field Induced Schottky to Ohmic Contact Transition in Fe3GeTe2/TMDs Contacts , 2023, ACS Applied Electronic Materials.

[4]  A. Krasheninnikov,et al.  Suppressed Fermi Level Pinning and Wide-Range Tunable Schottky Barrier in CrX3 (X = I, Br)/2D Metal Contacts. , 2023, The journal of physical chemistry letters.

[5]  T. Zhai,et al.  Capturing 2D van der Waals magnets with high probability for experimental demonstration from materials science literature , 2023, InfoMat.

[6]  Cuilian Wen,et al.  Efficient Ohmic Contact in Monolayer CrX2N4 (X = C, Si) Based Field‐Effect Transistors , 2023, Advanced Electronic Materials.

[7]  Su‐Ting Han,et al.  Electrical Contacts With 2D Materials: Current Developments and Future Prospects. , 2023, Small.

[8]  Y. Li,et al.  P-type electrical contacts for 2D transition-metal dichalcogenides , 2022, Nature.

[9]  H. Zeng,et al.  Revealing the weak Fermi level pinning effect of 2D semiconductor/2D metal contact: A case of monolayer In2Ge2Te6 and its Janus structure In2Ge2Te3Se3 , 2022, Materials Today Physics.

[10]  Eunha Lee,et al.  Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors , 2022, Nature Electronics.

[11]  E. Pop,et al.  Transistors based on two-dimensional materials for future integrated circuits , 2021, Nature Electronics.

[12]  U. Schwingenschlögl,et al.  Dipole-induced Ohmic contacts between monolayer Janus MoSSe and bulk metals , 2021, npj 2D Materials and Applications.

[13]  Y. Ang,et al.  Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers , 2021, npj 2D Materials and Applications.

[14]  J. Bokor,et al.  Ultralow contact resistance between semimetal and monolayer semiconductors , 2021, Nature.

[15]  X. Duan,et al.  Promises and prospects of two-dimensional transistors , 2021, Nature.

[16]  T. Rabczuk,et al.  Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles , 2020, 2012.14706.

[17]  Hui‐Ming Cheng,et al.  Structure-driven intercalated architecture of septuple-atomic-layer $MA_2Z_4$ family with diverse properties from semiconductor to topological insulator to Ising superconductor , 2020, 2008.02981.

[18]  Hui‐Ming Cheng,et al.  Chemical vapor deposition of layered two-dimensional MoSi2N4 materials , 2020, Science.

[19]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[20]  Hong Guo,et al.  Ohmic contact in monolayer InSe-metal interface , 2017 .

[21]  Wanlin Guo,et al.  Schottky Barriers in Bilayer Phosphorene Transistors. , 2017, ACS applied materials & interfaces.

[22]  Zhihao Yu,et al.  Analyzing the Carrier Mobility in Transition‐Metal Dichalcogenide MoS2 Field‐Effect Transistors , 2017, 1701.02079.

[23]  Tibor Grasser,et al.  Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. , 2016, ACS nano.

[24]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[25]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[26]  J. Robertson,et al.  3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. , 2015, ACS applied materials & interfaces.

[27]  Rahim Faez,et al.  Improving ION/IOFF and sub-threshold swing in graphene nanoribbon field-effect transistors using single vacancy defects , 2015 .

[28]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[29]  M. Kamalakar,et al.  Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. , 2015, Small.

[30]  Li Tao,et al.  Toward air-stable multilayer phosphorene thin-films and transistors , 2014, Scientific Reports.

[31]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[32]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS nano.

[33]  R. T. Tung The physics and chemistry of the Schottky barrier height , 2014 .

[34]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[35]  François Léonard,et al.  Electrical contacts to one- and two-dimensional nanomaterials. , 2011, Nature nanotechnology.

[36]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[37]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.