Transmission Measurements in KTP and Isomorphic Compounds.

The optical biaxial nature of crystals in the potassium titanyl phosphate (KTP) family result in anisotropic transmission that depends on the polarization direction of the transmitted radiation with respect to the fundamental crystal axes. Knowledge of the polarization-dependent crystal transmission is important for all wavelength-conversion applications and in particular is the only limitation on possible combinations of wavelengths when one uses the quasi-phase-matching techniques recently developed for the KTP family materials. In this study, polarized transmission spectra of KTiOPO(4) (KTP), RbTiOPO(4), RbTiOAsO(4) (RTA), and KTiOAsO(4) were measured over the 0.3-6-mum wavelength range with a spectrophotometer and a Fourier-transform infrared spectrometer. Seven crystal samples were studied, including four samples of KTP crystals of different origins. Variations in spectral transmission on the short- and long-wavelength edges, as well as visible-wavelength transmission and OH(-) absorption properties, are presented and discussed. The transmission of one sample of KTP and of RTA was also measured before and after periodic electric field poling.

[1]  N. Barnes,et al.  Some optical properties of KTP, LiIO/sub 3/, and LiNbO/sub 3/ , 1988 .

[2]  M. Satyanarayan,et al.  Effect of thermal annealing on the dielectric properties of KTiOPO4 single crystals , 1996 .

[3]  Gunnar Arisholm,et al.  Beam tilt and angular dispersion in broad-bandwidth, nanosecond optical parametric oscillators , 1999 .

[4]  J. McMullen Optical parametric interactions in isotropic materials using a phase‐corrected stack of nonlinear dielectric plates , 1975 .

[5]  David E. Zelmon,et al.  Rubidium titanyl arsenate difference-frequency generation and validation of new Sellmeier coefficients , 1996 .

[6]  Richard Stolzenberger,et al.  Optical properties and ionic conductivity of KTiOAsO4 crystals , 1992 .

[7]  G. Rosenman,et al.  Periodically poled KTiOAsO4 crystals for optical parametric oscillation , 1999 .

[8]  R Wallenstein,et al.  Nanosecond optical parametric oscillator based on large-aperture periodically poled RbTiOAsO(4). , 1999, Optics letters.

[9]  G. Loiacono,et al.  Nature of the infrared spectrum in band‐edge region of KTiOPO4 , 1991 .

[10]  A. Ballman,et al.  Crystal growth of KTiOPO4 isomorphs from tungstate and molybdate fluxes , 1991 .

[11]  R L Byer,et al.  Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO(4). , 1987, Applied optics.

[12]  Herman Vanherzeele,et al.  Potassium titanyl phosphate: properties and new applications , 1989 .

[13]  John D. Bierlein,et al.  Fabrication and characterization of optical waveguides in KTiOPO4 , 1987 .

[14]  P F Moulton,et al.  High-average-power KTiOAsO4 optical parametric oscillator. , 1998, Optics letters.

[15]  Fredrik Laurell,et al.  Frequency doubling in periodically poled RbTiOAsO4 , 1996 .

[16]  F. Laurell,et al.  Periodic poling of RbTiOPO4 for quasi-phase matched blue light generation , 1999 .

[17]  Fredrik Laurell,et al.  Electric field poling of flux grown KTiOPO4 , 1997 .

[18]  P. Morris,et al.  Influence of water vapor on the susceptibility to electric‐field damage of KTiOPO4 , 1993 .

[19]  J. Gavaldà,et al.  KTiOPO4 single crystals grown from neodymium modified fluxes , 1996 .

[20]  First-order type II quasi-phase-matched UV generation in periodically poled KTP. , 1999, Optics letters.

[21]  R. Norwood,et al.  Improved optical transmission of KTiOPO4 crystals through cerium‐doping and oxygen annealing , 1992 .

[22]  William P. Risk,et al.  Periodic poling of KTiOPO4 using an applied electric field , 1994 .

[23]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[24]  K. Kato,et al.  Parametric oscillation at 3.2 mu m in KTP pumped at 1.064 mu m , 1991 .