Limitations to upscaling of groundwater flow models dominated by surface water interaction
暂无分享,去创建一个
Arnold W. Heemink | P. T. M. Vermeulen | A. Heemink | C. te Stroet | P. Vermeulen | C. B. M. te Stroet
[1] O. Wiener,et al. Die theorie des Mischkörpers für das Feld der stationären Strömung , 1912 .
[2] R. M. Neupauer,et al. MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of the Model-Layer Variable-Direction Horizontal Anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) package , 2002 .
[3] J. Snepvangers,et al. Mapping Curvilinear Structures with Local Anisotropy Kriging , 2005 .
[4] Khalid Aziz,et al. Automatic grid generation for modeling reservoir heterogeneities , 1992 .
[5] Michael Andrew Christie,et al. Effective Flux Boundary Conditions for Upscaling Porous Media Equations , 2002 .
[6] Jesús Carrera,et al. A Synthesis of Approaches to Upscaling of Hydraulic Conductivities , 1995 .
[7] L. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .
[8] A. J. Desbarats,et al. Spatial averaging of hydraulic conductivity in three-dimensional heterogeneous porous media , 1992 .
[9] L. Durlofsky,et al. Scaleup in the Near-Well Region , 2000 .
[10] Arnold Heemink,et al. Reduced models for linear groundwater flow models using empirical orthogonal functions , 2004 .
[11] S. I. Hariharan,et al. Numerical methods for partial differential equations , 1986 .
[12] Clayton V. Deutsch,et al. Power Averaging for Block Effective Permeability , 1986 .
[13] Peter K. Kitanidis,et al. Adaptive-grid simulation of groundwater flow in heterogeneous aquifers , 1999 .
[14] L. Durlofsky,et al. A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations , 2003 .
[15] J. Gómez-Hernández,et al. Stochastic Characterization of Grid-Block Permeabilities: from Point Values to Block Tensors , 1990 .
[16] Ivar Aavatsmark,et al. Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .
[17] S. W. Mehl,et al. MODFLOW-2000, the U. S. Geological Survey modular ground-water model; user guide to the Link-AMG (LMG) package for solving matrix equations using an algebraic multigrid solver , 2001 .
[18] Chiang C. Mei,et al. Mechanics of heterogeneous porous media with several spatial scales , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[19] C. L. Farmer. Upscaling: a review , 2002 .
[20] G. Matheron. Éléments pour une théorie des milieux poreux , 1967 .
[21] K. Beven. A modular three-dimensional finite-difference ground-water flow model: Michael G. McDonald and Arlen W. Harbaugh. U.S. Geological Survey, National Center, Reston, Va., 1984, 528 pp. Copies available from Scientific Publications Co., P.O. Box 23041, Washington, DC 20026-3041. Price report $39,/comput , 1986 .
[22] L. Durlofsky,et al. A nonuniform coarsening approach for the scale-up of displacement processes in heterogeneous porous media , 1997 .
[23] P. Renard,et al. Calculating equivalent permeability: a review , 1997 .
[24] Flow in heterogeneous porous mediums: 1. Darcian-type description of two-phase systems , 1966 .
[25] E. C. Childs. Dynamics of fluids in Porous Media , 1973 .
[26] Øistein Bøe. Analysis of an upscaling method based on conservation of dissipation , 1994 .
[27] J. Penman. Dual and complementary variational techniques for the calculation of electromagnetic fields , 1988 .
[28] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[29] Otto D Strack,et al. Groundwater mechanics , 1989 .
[30] Vittorio Di Federico,et al. Multifaceted nature of hydrogeologic scaling and its interpretation , 2003 .
[31] Alain Bourgeat,et al. Homogenized behavior of two-phase flows in naturally fractured reservoirs with uniform fractures distribution , 1984 .
[32] Yoram Rubin,et al. A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations , 1990 .
[33] A. Trykozko,et al. Numerical Homogenization of the Absolute Permeability Using the Conformal-Nodal and Mixed-Hybrid Finite Element Method , 2001 .
[34] L. Durlofsky,et al. Use of Border Regions for Improved Permeability Upscaling , 2003 .
[35] L. Holden,et al. Global Upscaling of Permeability in Heterogeneous Reservoirs; The Output Least Squares (OLS) Method , 2000 .
[36] M. Bierkens,et al. Upscaling hydraulic conductivity: theory and examples from geohydrological studies , 2004, Nutrient Cycling in Agroecosystems.
[37] Louis J. Durlofsky,et al. Finite Difference Simulation of Geologically Complex Reservoirs With Tensor Permeabilities , 1998 .