Revising the hygroscopicity of inorganic sea salt particles

[1]  M. Bilde,et al.  What controls volatility of sea spray aerosol? Results from laboratory studies using artificial and real seawater samples , 2017 .

[2]  K. Kling,et al.  Impact of fatty acid coating on the CCN activity of sea salt particles , 2017 .

[3]  K. Prather,et al.  Phytoplankton blooms weakly influence the cloud forming ability of sea spray aerosol , 2016 .

[4]  K. Lehtinen,et al.  In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation , 2016 .

[5]  M. Salter,et al.  Calcium enrichment in sea spray aerosol particles , 2016 .

[6]  I. Riipinen,et al.  Surface Partitioning in Organic-Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles. , 2016, Environmental science & technology.

[7]  V. Grassian,et al.  Selectivity Across the Interface: A Test of Surface Activity in the Composition of Organic-Enriched Aerosols from Bubble Bursting. , 2016, The journal of physical chemistry letters.

[8]  C. Ruehl,et al.  An interfacial mechanism for cloud droplet formation on organic aerosols , 2016, Science.

[9]  Nicholas J. Higham,et al.  UManSysProp v1.0: an online and open-source facility for molecular property prediction and atmospheric aerosol calculations , 2016 .

[10]  Mandy Berg,et al.  Aerosol Measurement Principles Techniques And Applications , 2016 .

[11]  C. Ro,et al.  Hygroscopic behavior of NaCl–MgCl 2 mixture particles as nascent sea-spray aerosol surrogates and observation of efflorescence during humidification , 2015 .

[12]  J. A. Navarro,et al.  An empirically derived inorganic sea spray source function incorporating sea surface temperature , 2015 .

[13]  S. Ghan,et al.  On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models , 2015 .

[14]  B. Luo,et al.  Electrodynamic balance measurements of thermodynamic, kinetic, and optical aerosol properties inaccessible to bulk methods , 2015 .

[15]  A. Tivanski,et al.  Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles. , 2015, The journal of physical chemistry. A.

[16]  U. Pöschl,et al.  Size dependence of phase transitions in aerosol nanoparticles , 2015, Nature Communications.

[17]  J. R. Hite,et al.  Fine-particle water and pH in the southeastern United States , 2014 .

[18]  M. Salter,et al.  On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet , 2014 .

[19]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[20]  U. Lohmann,et al.  The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations , 2012 .

[21]  P. Zieger,et al.  Effects of relative humidity on aerosol light scattering: results from different European sites , 2012 .

[22]  D. Erickson,et al.  A sea-state based source function for size- and composition-resolved marine aerosol production , 2011 .

[23]  S. Martin,et al.  The Dynamic Shape Factor of Sodium Chloride Nanoparticles as Regulated by Drying Rate , 2010 .

[24]  U. Lohmann,et al.  Sensitivity studies of different aerosol indirect effects in mixed-phase clouds , 2009 .

[25]  P. Stier,et al.  Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations , 2009 .

[26]  Z. Ristovski,et al.  The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA) , 2009 .

[27]  Hugh Coe,et al.  Laboratory-generated primary marine aerosol via bubble-bursting and atomization , 2009 .

[28]  L. Teresa,et al.  Towards an understanding of the cloud formation potential of carbonaceous aerosol: Laboratory and field studies , 2009 .

[29]  Z. Ristovski,et al.  Intercomparison study of six HTDMAs: results and recommendations , 2009 .

[30]  Jonathan O. Allen,et al.  Hygroscopic behavior and liquid‐layer composition of aerosol particles generated from natural and artificial seawater , 2009 .

[31]  G. Mcfiggans,et al.  Inversion of tandem differential mobility analyser (TDMA) measurements , 2009 .

[32]  T. Peter,et al.  A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles , 2008 .

[33]  U. Baltensperger,et al.  Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review , 2008 .

[34]  A. Nenes,et al.  ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K + –Ca 2+ –Mg 2+ –NH 4 + –Na + –SO 4 2− –NO 3 − –Cl − –H 2 O aerosols , 2007 .

[35]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[36]  E. Lewis The effect of surface tension (Kelvin effect) on the equilibrium radius of a hygroscopic aqueous aerosol particle , 2006 .

[37]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[38]  L. M. Russell,et al.  Nanosize effect on the hygroscopic growth factor of aerosol particles , 2006 .

[39]  Alla Zelenyuk,et al.  From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters , 2006 .

[40]  S. Kreidenweis,et al.  under a Creative Commons License. Atmospheric Chemistry and Physics Water activity and activation diameters from hygroscopicity data – , 2006 .

[41]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[42]  Hugh Coe,et al.  A curved multi-component aerosol hygroscopicity model framework: Part 1 Inorganic compounds , 2005 .

[43]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[44]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[45]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[46]  A. Wexler,et al.  Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O , 2002 .

[47]  U. Baltensperger,et al.  Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. , 2002, Environmental science & technology.

[48]  Y. Ming,et al.  Predicted hygroscopic growth of sea salt aerosol , 2001 .

[49]  Warren H. Finlay,et al.  The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction , 2001 .

[50]  U. Krieger,et al.  Supercooling of single H2SO4/H2O aerosols to 158 K: No evidence for the occurrence of the octrahydrate , 2000 .

[51]  James N. Pitts,et al.  Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications , 1999 .

[52]  D. E. Spiel On the births of film drops from bubbles bursting on seawater , 1998 .

[53]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[54]  K. H. Fung,et al.  Thermodynamic and optical properties of sea salt aerosols , 1997 .

[55]  John B. Nowak,et al.  Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliquescence and crystallization , 1997 .

[56]  K. Coakley,et al.  Novel method to classify aerosol particles according to their mass-to-charge ratio—Aerosol particle mass analyser , 1996 .

[57]  John H. Seinfeld,et al.  Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition , 1995 .

[58]  D. E. Spiel On the births of jet drops from bubbles bursting on water surfaces , 1995 .

[59]  F. J. de Serres,et al.  Results and recommendations , 1994 .

[60]  I. Tang,et al.  Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols , 1993 .

[61]  J. Seinfeld,et al.  Second-generation inorganic aerosol model , 1991 .

[62]  S. Jennings,et al.  The mean free path in air , 1988 .

[63]  Barton E. Dahneke,et al.  Slip correction factors for nonspherical bodies—III the form of the general law , 1973 .

[64]  N. Dombrowski,et al.  Mechanism of the Bursting of Bubbles , 1954, Nature.

[65]  A. H. Woodcock SALT NUCLEI IN MARINE AIR AS A FUNCTION OF ALTITUDE AND WIND FORCE , 1953 .