Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region

Continuous rainfall data in grid format are required to run models for hydrological and agricultural research as well as water resources planning and management. The present work attempts to prepare a normal annual rainfall map in Himalayan region of India lying in Uttarakhand state at 1 km spatial resolution which currently is not available. In the region, India Meteorological Department maintains observatories/raingauge stations and data from 44 stations were used in this study. A comparative analysis of interpolation techniques like Inverse Distance Weighted, Polynomial, Splines, Ordinary Kriging and Universal Kriging shows that Universal Kriging with hole-effect model and natural logarithmic transformation with constant trend having Root Mean Square Error (RMSE) of 328.7 is the best choice. This is followed by Ordinary Kriging (RMSE 329.1), Splines (RMSE 392.4), Inverse Distance Weighted (RMSE 409.8) and Polynomial Interpolation (RMSE 418.5). Cross validation of the results shows the largest over prediction at Tehri rainfall station (62.5%) and largest under prediction at Nainital station (−36.5%). Physiographic zone wise, the least errors occur in the plains and the largest in the Great Himalayas. The spatial average rainfalls are 1,472 mm for Terai/Bhabar, 1,782 mm for the Shivalik ranges, 1,591 mm for the Lesser Himalayas and 1,635 mm for the Great Himalayan region. The mean areal rainfall in the region is 1,608 mm.

[1]  J. Delhomme Kriging in the hydrosciences , 1978 .

[2]  C. Obled,et al.  Objective analyses and mapping techniques for rainfall fields: An objective comparison , 1982 .

[3]  A. Martínez-cob Estimation of mean annual precipitation as affected by elevation using multivariate geostatistics , 1995 .

[4]  Tiangang Liang,et al.  Study on the estimation of precipitation resources for rainwater harvesting agriculture in semi-arid land of China , 2005 .

[5]  G. Bastin,et al.  On the Accuracy of Areal Rainfall Estimation - a Case-study , 1987 .

[6]  M. Tomczak,et al.  Spatial Interpolation and its Uncertainty Using Automated Anisotropic Inverse Distance Weighting (IDW) - Cross-Validation/Jackknife Approach , 1998 .

[7]  C. Daly,et al.  A knowledge-based approach to the statistical mapping of climate , 2002 .

[8]  Christopher Daly,et al.  Guidelines for assessing the suitability of spatial climate data sets , 2006 .

[9]  S. Vicente‐Serrano,et al.  Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature , 2003 .

[10]  M. Hutchinson,et al.  Splines — more than just a smooth interpolator , 1994 .

[11]  S. Marsh,et al.  Climate spatial variability and data resolution in a semi-arid watershed, south-eastern Arizona , 2003 .

[12]  Roger G. Barry,et al.  Mountain weather and climate , 1982 .

[13]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[14]  Naresh Kumar,et al.  Effect of orography on precipitation in the western Himalayan region , 1997 .

[15]  Deliang L. Chen,et al.  The influence of wind and topography on precipitation distribution in Sweden: statistical analysis and modelling , 2003 .

[16]  Upmanu Lall,et al.  Locally Weighted Polynomial Estimation of Spatial Precipitation , 1998 .

[17]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[18]  C. Board,et al.  Display and analysis of spatial data , 1975 .

[19]  Rafael L. Bras,et al.  Optimal estimators of mean areal precipitation in regions of orographic influence , 1982 .

[20]  A. Martínez-cob,et al.  Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain , 1996 .

[21]  J. Salas,et al.  A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION , 1985 .

[22]  Dimitrios Gyalistras,et al.  Development and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951-2000) , 2003 .

[23]  D. Unwin,et al.  The areal extension of rainfall records: An alternative model , 1969 .

[24]  Chris Brunsdon,et al.  Spatial variations in the average rainfall–altitude relationship in Great Britain: an approach using geographically weighted regression , 2001 .

[25]  Anatoly A. Saveliev,et al.  Modeling of the Daily Rainfall Values Using Surface Under Tension and Kriging , 1998 .

[26]  Jan Feyen,et al.  Temporal and spatial rainfall analysis across a humid tropical catchment , 2001 .

[27]  Dimitris Papamichail,et al.  Geostatistical analysis of spatial variability of rainfall and optimal design of a rain gauge network , 1996 .

[28]  A. Flint,et al.  Precipitation Estimation in Mountainous Terrain Using Multivariate Geostatistics. Part II: Isohyetal Maps , 1990 .

[29]  Ioannis K. Tsanis,et al.  Orographic Precipitation Modeling with Multiple Linear Regression , 2004 .

[30]  C. Lloyd Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain , 2005 .

[31]  D. Marks,et al.  A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain , 1992 .

[32]  C. Prudhomme,et al.  Relationships between extreme daily precipitation and topography in a mountainous region: a case study in Scotland , 1998 .

[33]  J. Hay,et al.  High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data , 1998 .

[34]  D. Hannah,et al.  Spatial pattern in the precipitation regime of Nepal , 2004 .

[35]  Huey-Hong Hsieh,et al.  Geostatistical interpolation of space–time rainfall on Tamshui River basin, Taiwan , 2007 .

[36]  Christel Prudhomme,et al.  MAPPING EXTREME RAINFALL IN A MOUNTAINOUS REGION USING GEOSTATISTICAL TECHNIQUES: A CASE STUDY IN SCOTLAND , 1999 .

[37]  Pratap Singh,et al.  Spatial Distribution and Seasonal Variability of Rainfall in a Mountainous Basin in the Himalayan Region , 2006 .

[38]  Ioannis K. Tsanis,et al.  Temporal and spatial variation of annual rainfall on the island of Crete, Greece , 2003 .

[39]  M. Hutchinson,et al.  A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data , 2000 .

[40]  K. Ramasastri,et al.  Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas , 1995 .

[41]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[42]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[43]  N. Diodato The influence of topographic co‐variables on the spatial variability of precipitation over small regions of complex terrain , 2005 .

[44]  Michael F. Hutchinson,et al.  Interpolation of Rainfall Data with Thin Plate Smoothing Splines - Part I: Two Dimensional Smoothing of Data with Short Range Correlation , 1998 .

[45]  P. Goovaerts Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall , 2000 .

[46]  Kang-Tsung Chang,et al.  Introduction to Geographic Information Systems , 2001 .

[47]  C. Tang,et al.  Topographical effects on the distributions of rainfall and 18O distributions: a case in Miyake Island, Japan , 1998 .

[48]  Ali M. Subyani Geostatistical study of annual and seasonal mean rainfall patterns in southwest Saudi Arabia / Distribution géostatistique de la pluie moyenne annuelle et saisonnière dans le Sud-Ouest de l’Arabie Saoudite , 2004 .

[49]  M. Hutchinson,et al.  Spatial interpolation of the parameters of a rainfall model from ground-based data , 1998 .

[50]  Ute Christina Herzfeld,et al.  REGEOTOP: New climatic data fields for East Asia based on localized relief information and geostatistical methods , 2004 .