Reconstruction Using Witness Complexes

We present a novel reconstruction algorithm that, given an input point set sampled from an object S, builds a one-parameter family of complexes that approximate S at different scales. At a high level, our method is very similar in spirit to Chew’s surface meshing algorithm, with one notable difference though: the restricted Delaunay triangulation is replaced by the witness complex, which makes our algorithm applicable in any metric space. To prove its correctness on curves and surfaces, we highlight the relationship between the witness complex and the restricted Delaunay triangulation in 2d and in 3d. Specifically, we prove that both complexes are equal in 2d and closely related in 3d, under some mild sampling assumptions.

[1]  Nina Amenta,et al.  One-Pass Delaunay Filtering for Homeomorphic 3D Surface Reconstruction , 1999 .

[2]  Jean-Daniel Boissonnat,et al.  Natural neighbor coordinates of points on a surface , 2001, Comput. Geom..

[3]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[4]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[5]  J. Boissonnat,et al.  Provably good sampling and meshing of Lipschitz surfaces , 2006, SCG '06.

[6]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[7]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[8]  Frédéric Chazal,et al.  Weak feature size and persistent homology: computing homology of solids in Rn from noisy data samples , 2005, SCG.

[9]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[10]  Steve Oudot On the Topology of the Restricted Delaunay Triangulation and Witness Complex in Higher Dimensions , 2008, ArXiv.

[11]  U. Pirl Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten , 1969 .

[12]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[13]  Stefan Funke,et al.  Curve reconstruction from noisy samples , 2003, SCG '03.

[14]  Ravi Krishna Kolluri,et al.  Provably good moving least squares , 2005, SIGGRAPH Courses.

[15]  Vin de Silva,et al.  A weak characterisation of the Delaunay triangulation , 2008 .

[16]  Steve Oudot,et al.  Meshing volumes with curved boundaries , 2010, Engineering with Computers.

[17]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[18]  Tamal K. Dey,et al.  Shape Dimension and Approximation from Samples , 2002, SODA '02.

[19]  Vin de Silva A weak definition of Delaunay triangulation , 2003, ArXiv.

[20]  Sunghee Choi,et al.  A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..

[21]  Herbert Edelsbrunner,et al.  Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.

[22]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.

[23]  Frédéric Chazal,et al.  Topology guaranteeing manifold reconstruction using distance function to noisy data , 2006, SCG '06.

[24]  Luiz Velho,et al.  Surface reconstruction from noisy point clouds , 2005, SGP '05.

[25]  J. Giesen,et al.  Delaunay Triangulation Based Surface Reconstruction: Ideas and Algorithms , 2004 .

[26]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..

[27]  Jean-Daniel Boissonnat,et al.  Effective computational geometry for curves and surfaces , 2006 .

[28]  Mariette Yvinec,et al.  Delaunay Triangulation Based Surface Reconstruction : a short survey , 2004 .

[29]  Trevor Darrell,et al.  Nearest-Neighbor Searching and Metric Space Dimensions , 2006 .

[30]  Joachim Giesen,et al.  Delaunay Triangulation Based Surface Reconstruction , 2006 .

[31]  F. Chazal,et al.  The λ-medial axis , 2005 .

[32]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2006, Comput. Geom..

[33]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[34]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[35]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[36]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[37]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.