Error propagation of the track model and track fitting strategy for the Iron CALorimeter detector in India-based neutrino observatory

Abstract A Kalman filter package has been developed for reconstructing muon ( μ ± ) tracks (coming from the neutrino interactions) in ICAL detector. Here, we describe the algorithm of muon track fitting, with emphasis on the error propagation of the elements of Kalman state vector along the muon trajectory through dense materials and inhomogeneous magnetic field. The higher order correction terms are included for reconstructing muon tracks at large zenith angle θ (measured from the perpendicular to the detector planes). The performances of this algorithm and its limitations are discussed.

[1]  R. Frühwirth Application of Kalman filtering to track and vertex fitting , 1987 .

[2]  Orin I. Dahl,et al.  Approximations to multiple Coulomb scattering , 1991 .

[3]  R. Frühwirth,et al.  On the quantitative modelling of core and tails of multiple scattering by Gaussian mixtures , 2001 .

[4]  W. Leo Techniques for Nuclear and Particle Physics Experiments: A How-To Approach , 1987 .

[5]  A. Smirnov Neutrino mass hierarchy and matter effects , 2013, 1312.7309.

[6]  W. Leo,et al.  Techniques for Nuclear and Particle Physics Experiments , 1987 .

[7]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[8]  D. Groom,et al.  MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV , 2001 .

[9]  C. Giunti,et al.  Fundamentals of Neutrino Physics and Astrophysics , 2007 .

[10]  Analytic formula for track extrapolation in non-homogeneous magnetic field , 2006 .

[11]  S. Neubert,et al.  A novel generic framework for track fitting in complex detector systems , 2009, 0911.1008.

[12]  P. N. Smith,et al.  Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam. , 2006, Physical review letters.

[13]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[14]  S. Bhattacharya,et al.  A GEANT-based study of atmospheric neutrino oscillation parameters at INO , 2007, hep-ph/0702180.

[15]  A. Samanta The mass hierarchy with atmospheric neutrinos at INO , 2006, hep-ph/0610196.

[16]  M. Naimuddin,et al.  Hadron energy response of the Iron Calorimeter detector at the India-based Neutrino Observatory , 2013, 1304.5115.

[17]  R. K. Bock,et al.  Data Analysis Techniques for High-Energy Physics , 2000 .

[18]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[19]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[20]  A. Dighe,et al.  The reach of INO for atmospheric neutrino oscillation parameters , 2013, 1303.2534.

[21]  Are Strandlie,et al.  Derivation of Jacobians for the propagation of covariance matrices of track parameters in homogeneous magnetic fields , 2006 .

[22]  Juan Andrade-Cetto,et al.  Environment Learning for Indoor Mobile Robots - A Stochastic State Estimation Approach to Simultaneous Localization and Map Building , 2006, Springer Tracts in Advanced Robotics.

[23]  Lennart Ljung,et al.  Extended Kalman Filter , 1987 .

[24]  S. Bheesette Design and Characterisation Studies of Resistive Plate Chambers , 2016 .

[25]  S. Choubey,et al.  Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments , 2012, Journal of High Energy Physics.

[26]  K. Lassila-Perini,et al.  Energy loss in thin layers in GEANT , 1995 .

[27]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[28]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).